On a special function used in the description of electromagnetic surface waves
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 3, pp. 492-503 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The tangential component of the electric field of a surface wave at any distance from the transmitting antenna lying in the interface plane of two homogeneous media can be represented in terms of a function of two complex variables $\widehat W(q,\xi)$ for arbitrary parameters of the interface. In this paper, representations of the function $\widehat W(q,\xi)$ in the form of series are given that allow one to quickly calculate the values of $\widehat W(q,\xi)$ and to investigate the analytic properties of this function. The dependence of the field of the surface wave on time is determined using the inverse Laplace transform, where the path of integration is chosen in such a way that the integrand rapidly decreases at infinity, which drastically improves the computation speed compared with the method based on the Fourier transform.
@article{ZVMMF_2011_51_3_a7,
     author = {E. G. Bezrukova and E. A. Rudenchik},
     title = {On a special function used in the description of electromagnetic surface waves},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {492--503},
     year = {2011},
     volume = {51},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_3_a7/}
}
TY  - JOUR
AU  - E. G. Bezrukova
AU  - E. A. Rudenchik
TI  - On a special function used in the description of electromagnetic surface waves
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 492
EP  - 503
VL  - 51
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_3_a7/
LA  - ru
ID  - ZVMMF_2011_51_3_a7
ER  - 
%0 Journal Article
%A E. G. Bezrukova
%A E. A. Rudenchik
%T On a special function used in the description of electromagnetic surface waves
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 492-503
%V 51
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_3_a7/
%G ru
%F ZVMMF_2011_51_3_a7
E. G. Bezrukova; E. A. Rudenchik. On a special function used in the description of electromagnetic surface waves. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 3, pp. 492-503. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_3_a7/

[1] Sommerfeld A., “Über die Ausbreitung der Wellen in der drahtlosen Telegraphe”, Ann. Phys., 28 (1909), 665–736 | DOI | Zbl

[2] Sommerfeld A., “Über die Ausbreitung der Wellen in der drahtlosen Telegraphe”, Ann. Phys., 81 (1926), 1135–1153 | DOI | Zbl

[3] Rudenchik E. A., Volkomirskaya L. B., Reznikov A. E., Bezrukova E. G., “Analytical representation of the surface wave generated by an antenna at the interface between two homogeneous media”, Phys. Wave Phenomena, 18:2 (2010), 1–9

[4] Rudenchik E. A., Volkomirskaya L. B., Reznikov A. E., Sakhterov V. I., “Analiticheskoe predstavlenie 3D-polya izlucheniya v dvukhsloinoi srede i obratnaya zadacha georadarnogo zondirovaniya”, Uspekhi sovrem. radioelektroniki, 2009, no. 1–2, 29–38

[5] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady, Nauka, M., 1981 | MR | Zbl

[6] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR

[7] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971

[8] Rudenchik E. A., Volkomirskaya L. B., Reznikov A. E., “Investigation of the propagation of signals in onexdimenx sional electrodynamics for interpretating electromagnetic sounding data. Consideration of the analytic properx ties of permittivity”, Phys. Wave Phenomena, 16:1 (2008), 1–18

[9] Rudenchik E. A., Volkomirskaya L. B., Reznikov A. E., “Study of signal propagation in onexdimensional electrodyx namics for interpretating electromagnetic sounding data. Consideration of conductivity in the function of perx mittivity”, Phys. Wave Phenomena, 16:2 (2008), 1–14