Study of classical solution of a one-dimensional mixed problem for one class of fifth-order semilinear equations of the Korteweg–de Vries–Burgers type
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 3, pp. 436-455 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

As is well known, many problems of mathematical physics are reduced to one- and multi-dimensional initial and initial–boundary value problems for, generally speaking, strongly nonlinear pseudoparabolic equations. The existence (local and global) and uniqueness of a classical solution to a one-dimensional mixed problem with homogeneous Riquier-type boundary conditions are analyzed for a class of fifth-order semilinear pseudoparabolic equations of the Korteweg–de Vries–Burgers type. For the classical solution of the mixed problem, a uniqueness theorem is proved using the Gronwall–Bellman inequality, a local existence theorem is proved by combining the generalized contraction mapping principle with the Schauder fixed point principle, and a global existence theorem is proved by applying the method of a priori estimates.
@article{ZVMMF_2011_51_3_a3,
     author = {M. H. Sadykhov and K. I. Khudaverdiev},
     title = {Study of classical solution of a~one-dimensional mixed problem for one class of fifth-order semilinear equations of the {Korteweg{\textendash}de} {Vries{\textendash}Burgers} type},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {436--455},
     year = {2011},
     volume = {51},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_3_a3/}
}
TY  - JOUR
AU  - M. H. Sadykhov
AU  - K. I. Khudaverdiev
TI  - Study of classical solution of a one-dimensional mixed problem for one class of fifth-order semilinear equations of the Korteweg–de Vries–Burgers type
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 436
EP  - 455
VL  - 51
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_3_a3/
LA  - ru
ID  - ZVMMF_2011_51_3_a3
ER  - 
%0 Journal Article
%A M. H. Sadykhov
%A K. I. Khudaverdiev
%T Study of classical solution of a one-dimensional mixed problem for one class of fifth-order semilinear equations of the Korteweg–de Vries–Burgers type
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 436-455
%V 51
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_3_a3/
%G ru
%F ZVMMF_2011_51_3_a3
M. H. Sadykhov; K. I. Khudaverdiev. Study of classical solution of a one-dimensional mixed problem for one class of fifth-order semilinear equations of the Korteweg–de Vries–Burgers type. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 3, pp. 436-455. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_3_a3/

[1] Aassila M., “Decay of solutions of some nonlinear equations”, Port. Math., 60:4 (2003), 389–409 | MR | Zbl

[2] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya cobolevskogo tipa, Fizmatlit, M., 2007

[3] Khudaverdiev K. I., “Issledovanie klassicheskogo resheniya mnogomernoi smeshannoi zadachi dlya odnogo klassa kvazilineinykh giperbolicheskikh uravnenii vtorogo poryadka”, Uch. zap. Azgosun-ta. Cer. fiz.-matem. nauk, 1972, no. 1, 3–27 | MR

[4] Mekhtieva G. F., Khudaverdiev K. I., Issledovanie odnomernoi smeshannoi zadachi dlya odnogo klassa nelineinykh differentsialnykh uravnenii teorii filtratsii, Dep. v VINITI RAN, Moskva, 17.12.1993. No 3107-V 93, 66 pp.

[5] Sadikhov M. N., “Investigation of uniqueness of almost everywhere solution of one-dimensional mixed problem for one non-linear equation of Kortevegue–de Vries–Bürgers type”, Proc. Inst. Math. and Mech. Nat. Acad. Sci. Azerb., 28 (2008), 103–112 | MR

[6] Khudaverdiev K. I., Sadykhov M. N., “O suschestvovanii v malom resheniya pochti vsyudu odnomernoi smeshannoi zadachi dlya odnogo klassa nelineinykh uravnenii tipa Kortevega–de Vriza–Byurgerca”, Vestn. Bakinskogo Gos. un-ta. Ser. fiz.-matem. nauk, 2008, no. 3, 5–13

[7] Sadikhov M. N., “On the global existence of almost everywhere solution of one-dimensional mixed problem for one class of non-linear equations of Kortevegue–de Vries–Bürgers type”, Proc. Inst. Math. and Mech. Nat. Acad. Sci. Azerb., 29 (2008), 91–100 | MR