Finite-time relaxation of the solution of a nonlinear pseudoparabolic equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 3, pp. 407-435 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A model equation is considered that describes the relaxation of an initial perturbation in a crystalline semiconductor in the case when its electrical conductivity depends nonlocally on the field. For certain initial parameters, the effect of finite-time “cooling” is proved to occur. For other parameters, the first term of the long-time asymptotics is found and the remainder of the asymptotic expansion is estimated.
@article{ZVMMF_2011_51_3_a2,
     author = {M. O. Korpusov and A. G. Sveshnikov},
     title = {Finite-time relaxation of the solution of a~nonlinear pseudoparabolic equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {407--435},
     year = {2011},
     volume = {51},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_3_a2/}
}
TY  - JOUR
AU  - M. O. Korpusov
AU  - A. G. Sveshnikov
TI  - Finite-time relaxation of the solution of a nonlinear pseudoparabolic equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 407
EP  - 435
VL  - 51
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_3_a2/
LA  - ru
ID  - ZVMMF_2011_51_3_a2
ER  - 
%0 Journal Article
%A M. O. Korpusov
%A A. G. Sveshnikov
%T Finite-time relaxation of the solution of a nonlinear pseudoparabolic equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 407-435
%V 51
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_3_a2/
%G ru
%F ZVMMF_2011_51_3_a2
M. O. Korpusov; A. G. Sveshnikov. Finite-time relaxation of the solution of a nonlinear pseudoparabolic equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 3, pp. 407-435. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_3_a2/

[1] Galaktionov V. A., Pokhozhaev S. I., “Uravneniya nelineinoi dispersii tretego poryadka: udarnye volny, volny razrezheniya i razrusheniya”, Zh. vychisl. matem. i matem. fiz., 48:10 (2008), 1819–1846 | MR | Zbl

[2] Kalantarov V. K., Ladyzhenskaya O. A., “Formirovanie kollapsov v kvazilineinykh uravneniyakh parabolicheskogo i giperbolicheskogo tipov”, Zap. LOMI, 69, 1977, 77–102 | MR | Zbl

[3] Mitidieri E. L., Pokhozhaev S. I., “Apriornye otsenki i otsutstvie reshenii differentsialnykh neravenstv v chastnykh proizvodnykh”, Tr. MIAN, M., 2001, 3–383

[4] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR

[5] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, FIZMATLIT, M., 2007

[6] Levine H. A., “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+\mathscr F(u)$”, Arch. Ration. Mech. Analys., 51 (1973), 371–386 | MR | Zbl

[7] Levine H. A., “Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt}=-Au+\mathscr F(u)$”, Trans. Amer. Math. Soc., 192 (1974), 1–21 | MR | Zbl