Theory of equivalence systems for describing algebraic closures of a generalized estimation model. II
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 3, pp. 529-544 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Characteristic matrices and metrics of equivalence systems are studied that help give an efficient description of conjunctions of equivalence systems. Using these results, families of correct polynomials in the algebraic approach to classification are described.
@article{ZVMMF_2011_51_3_a10,
     author = {A. G. D'yakonov},
     title = {Theory of equivalence systems for describing algebraic closures of a~generalized estimation {model.~II}},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {529--544},
     year = {2011},
     volume = {51},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_3_a10/}
}
TY  - JOUR
AU  - A. G. D'yakonov
TI  - Theory of equivalence systems for describing algebraic closures of a generalized estimation model. II
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 529
EP  - 544
VL  - 51
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_3_a10/
LA  - ru
ID  - ZVMMF_2011_51_3_a10
ER  - 
%0 Journal Article
%A A. G. D'yakonov
%T Theory of equivalence systems for describing algebraic closures of a generalized estimation model. II
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 529-544
%V 51
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_3_a10/
%G ru
%F ZVMMF_2011_51_3_a10
A. G. D'yakonov. Theory of equivalence systems for describing algebraic closures of a generalized estimation model. II. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 3, pp. 529-544. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_3_a10/

[1] Dyakonov A. G., “Teoriya sistem ekvivalentnostei dlya opisaniya algebraicheskikh zamykanii obobschennoi modeli vychisleniya otsenok”, Zh. vychisl. matem. i matem. fiz., 50:2 (2010), 388–400 | MR

[2] Zhuravlev Yu. I., Nikiforov V. V., “Algoritmy raspoznavaniya, osnovannye na vychislenii otsenok”, Kibernetika, 1971, no. 3, 1–11 | Zbl

[3] Zhuravlev Yu. I., Kamilov M. M., Tulyaganov Sh. E., Algoritmy vychisleniya otsenok i ikh primenenie, FAN, Tashkent, 1974 | MR | Zbl

[4] Zhuravlev Yu. I., “Ob algebraicheskom podkhode k resheniyu zadach raspoznavaniya ili klassifikatsii”, Probl. kibernetiki, 33, Nauka, M., 1978, 5–68

[5] Zhuravlev Yu. I., “Korrektnye algoritmy nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov. II”, Kibernetika, 1977, no. 6, 21–27 | Zbl

[6] Matrosov V. L., Korrektnye algebry algoritmov raspoznavaniya ogranichennoi emkosti, Dis. $\dots$ dokt. fiz.-matem. nauk, Gos. ped. in-t im. V. I. Lenina, M., 1985, 220 pp.

[7] Matrosov V. L., “Sintez optimalnykh algoritmov v algebraicheskikh zamykaniyakh modelei algoritmov raspoznavaniya”, Raspoznavanie, klassifikatsiya, prognoz. Matem. metody i ikh primenenie, Vyp. 1, Nauka, M., 1989, 149–176 | MR

[8] Dyakonov A. G., “Kriterii vyrozhdennosti matritsy poparnykh $l_1$-rasstoyanii i ikh obobscheniya”, Dokl. RAN, 425:1 (2009), 11–14 | MR

[9] Dyakonov A. G., “Kriterii korrektnosti algebraicheskikh zamykanii modeli algoritmov vychisleniya otsenok”, Dokl. RAN, 420:6 (2008), 732–735 | MR

[10] Dyakonov A. G., “Metriki algebraicheskikh zamykanii v zadachakh raspoznavaniya obrazov s dvumya neperesekayuschimisya klassami”, Zh. vychisl. matem. i matem. fiz., 48:5 (2008), 916–927 | MR

[11] Reid L., Sun X., “Distance matrices and ridge function interpolation”, Canadian J. Math., 45 (1993), 1313–1323 | DOI | MR | Zbl

[12] Bhatia R., Infinitely divisible matrices, (na 25.08.10), Indian Statistical Inst., Delhi Centre http://www.isid.ac.in/~statmath/eprints

[13] Deza M. M., Loran M., Geometriya razrezov i metrik, MTsNMO, M., 2001

[14] Avis D., Some polyhedral cones related to metric spaces, PhD thesis, Stanford University, 1977

[15] Assouad P., Caracte'risations de sous-espaces norme's de $L_1$ de dimension finie, Se'minaire d'Analyse Fonctionnelle. Ecole Polytechnique Palaiseau. No 19, 1979–1980 | MR

[16] Zhuravlev Yu. I., Isaev I. V., “Postroenie algoritmov raspoznavaniya, korrektnykh dlya zadannoi kontrolnoi vyborki”, Zh. vychisl. matem. i matem. fiz., 19:3 (1979), 726–738 | MR | Zbl

[17] Zhuravlev Yu. I., “Korrektnye algoritmy nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov. III”, Kibernetika, 1978, no. 2, 35–43 | Zbl

[18] Matrosov V. L., “O kriteriyakh polnoty modeli algoritmov vychisleniya otsenok i ee algebraicheskikh zamykanii”, Dokl. AN SSSR, 258:4 (1981), 791–796 | MR