@article{ZVMMF_2011_51_3_a10,
author = {A. G. D'yakonov},
title = {Theory of equivalence systems for describing algebraic closures of a~generalized estimation {model.~II}},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {529--544},
year = {2011},
volume = {51},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_3_a10/}
}
TY - JOUR AU - A. G. D'yakonov TI - Theory of equivalence systems for describing algebraic closures of a generalized estimation model. II JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2011 SP - 529 EP - 544 VL - 51 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_3_a10/ LA - ru ID - ZVMMF_2011_51_3_a10 ER -
%0 Journal Article %A A. G. D'yakonov %T Theory of equivalence systems for describing algebraic closures of a generalized estimation model. II %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2011 %P 529-544 %V 51 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_3_a10/ %G ru %F ZVMMF_2011_51_3_a10
A. G. D'yakonov. Theory of equivalence systems for describing algebraic closures of a generalized estimation model. II. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 3, pp. 529-544. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_3_a10/
[1] Dyakonov A. G., “Teoriya sistem ekvivalentnostei dlya opisaniya algebraicheskikh zamykanii obobschennoi modeli vychisleniya otsenok”, Zh. vychisl. matem. i matem. fiz., 50:2 (2010), 388–400 | MR
[2] Zhuravlev Yu. I., Nikiforov V. V., “Algoritmy raspoznavaniya, osnovannye na vychislenii otsenok”, Kibernetika, 1971, no. 3, 1–11 | Zbl
[3] Zhuravlev Yu. I., Kamilov M. M., Tulyaganov Sh. E., Algoritmy vychisleniya otsenok i ikh primenenie, FAN, Tashkent, 1974 | MR | Zbl
[4] Zhuravlev Yu. I., “Ob algebraicheskom podkhode k resheniyu zadach raspoznavaniya ili klassifikatsii”, Probl. kibernetiki, 33, Nauka, M., 1978, 5–68
[5] Zhuravlev Yu. I., “Korrektnye algoritmy nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov. II”, Kibernetika, 1977, no. 6, 21–27 | Zbl
[6] Matrosov V. L., Korrektnye algebry algoritmov raspoznavaniya ogranichennoi emkosti, Dis. $\dots$ dokt. fiz.-matem. nauk, Gos. ped. in-t im. V. I. Lenina, M., 1985, 220 pp.
[7] Matrosov V. L., “Sintez optimalnykh algoritmov v algebraicheskikh zamykaniyakh modelei algoritmov raspoznavaniya”, Raspoznavanie, klassifikatsiya, prognoz. Matem. metody i ikh primenenie, Vyp. 1, Nauka, M., 1989, 149–176 | MR
[8] Dyakonov A. G., “Kriterii vyrozhdennosti matritsy poparnykh $l_1$-rasstoyanii i ikh obobscheniya”, Dokl. RAN, 425:1 (2009), 11–14 | MR
[9] Dyakonov A. G., “Kriterii korrektnosti algebraicheskikh zamykanii modeli algoritmov vychisleniya otsenok”, Dokl. RAN, 420:6 (2008), 732–735 | MR
[10] Dyakonov A. G., “Metriki algebraicheskikh zamykanii v zadachakh raspoznavaniya obrazov s dvumya neperesekayuschimisya klassami”, Zh. vychisl. matem. i matem. fiz., 48:5 (2008), 916–927 | MR
[11] Reid L., Sun X., “Distance matrices and ridge function interpolation”, Canadian J. Math., 45 (1993), 1313–1323 | DOI | MR | Zbl
[12] Bhatia R., Infinitely divisible matrices, (na 25.08.10), Indian Statistical Inst., Delhi Centre http://www.isid.ac.in/~statmath/eprints
[13] Deza M. M., Loran M., Geometriya razrezov i metrik, MTsNMO, M., 2001
[14] Avis D., Some polyhedral cones related to metric spaces, PhD thesis, Stanford University, 1977
[15] Assouad P., Caracte'risations de sous-espaces norme's de $L_1$ de dimension finie, Se'minaire d'Analyse Fonctionnelle. Ecole Polytechnique Palaiseau. No 19, 1979–1980 | MR
[16] Zhuravlev Yu. I., Isaev I. V., “Postroenie algoritmov raspoznavaniya, korrektnykh dlya zadannoi kontrolnoi vyborki”, Zh. vychisl. matem. i matem. fiz., 19:3 (1979), 726–738 | MR | Zbl
[17] Zhuravlev Yu. I., “Korrektnye algoritmy nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov. III”, Kibernetika, 1978, no. 2, 35–43 | Zbl
[18] Matrosov V. L., “O kriteriyakh polnoty modeli algoritmov vychisleniya otsenok i ee algebraicheskikh zamykanii”, Dokl. AN SSSR, 258:4 (1981), 791–796 | MR