@article{ZVMMF_2011_51_3_a1,
author = {I. A. Zlotnik},
title = {Family of finite-difference schemes with approximate transparent boundary conditions for the generalized nonstationary {Schr\"odinger} equation in a~semi-infinite strip},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {384--406},
year = {2011},
volume = {51},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_3_a1/}
}
TY - JOUR AU - I. A. Zlotnik TI - Family of finite-difference schemes with approximate transparent boundary conditions for the generalized nonstationary Schrödinger equation in a semi-infinite strip JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2011 SP - 384 EP - 406 VL - 51 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_3_a1/ LA - ru ID - ZVMMF_2011_51_3_a1 ER -
%0 Journal Article %A I. A. Zlotnik %T Family of finite-difference schemes with approximate transparent boundary conditions for the generalized nonstationary Schrödinger equation in a semi-infinite strip %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2011 %P 384-406 %V 51 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_3_a1/ %G ru %F ZVMMF_2011_51_3_a1
I. A. Zlotnik. Family of finite-difference schemes with approximate transparent boundary conditions for the generalized nonstationary Schrödinger equation in a semi-infinite strip. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 3, pp. 384-406. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_3_a1/
[1] Berger J.-F., Girod M., Gogny D., “Time-dipendent quantum collective dynamics applied to nuclear fission”, Comp. Phys. Communs., 63 (1991), 365–374 | DOI | Zbl
[2] Goutte H., Berger J.-F., Casoly P., Gogny D., “Microscopic approach of fission dynamics applied to fragment kinetic energy and mass distribution in ${}^{238}$U”, Phys. Rev. C, 71:2 (2005), 024316, 13 pp. | DOI
[3] Antoine X., Arnold A., Besse C., Ehrhardt M., Schadle A., “A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations”, Commun. Compus. Phys., 4:4 (2008), 729–796 | MR
[4] Arnold A., “Numerically absorbing boundary conditions for quantum evolution equations”, VLSI Design, 6 (1998), 313–319 | DOI
[5] Ehrhardt M., Arnold A., “Discrete transparent boundary conditions for the Schrödinger equation”, Riv. Mat. Univ. Parma, 6 (2001), 57–108 | MR | Zbl
[6] Arnold A., Ehrhardt M., Sofronov I., “Disctrete transparent boundary conditions for the Schödinger equation: fast calculations, approximation and stability”, Communs. Math. Sci., 1 (2003), 501–556 | MR | Zbl
[7] Ducomet B., Zlotnik A., “On stability of the Crank–Nicolson scheme with approximate transparent boundary conditions for the Schrödinger equation. Part I”, Communs. Math. Sci., 4:4 (2006), 741–766 | MR | Zbl
[8] Ducomet B., Zlotnik A., “On stability of the Crank–Nicolson scheme with approximate transparent boundary conditions for the Schrödinger equation. Part II”, Communs. Math. Sci., 5:2 (2007), 267–298 | MR | Zbl
[9] Zlotnik A. A., Dyukome B., “Ustoichivost simmetrichnoi raznostnoi skhemy s priblizhennymi prozrachnymi granichnymi usloviyami dlya nestatsionarnogo uravneniya Shredingera”, Dokl. RAN, 413:134 (2007), 96–107 | MR
[10] Schmidt F., Yevick D., “Discrete transparent boundary conditions for Schrödinger-type equations”, J. Comput. Phys., 134 (1997), 96–107 | DOI | MR | Zbl
[11] Antoine X., Besse C., “Unconditionally stable discretization schemes of non-reflecting boundary conditions for the one-dimensional Schrödinger equation”, J. Compus. Phys., 188 (2003), 157–175 | DOI | MR | Zbl
[12] Han H., Jin J., Wu X., “A finite-difference method for the one-dimensional time-dependent Schrödinger-type equation on unbounded domains”, Comput. Math. Appl., 50 (2005), 1345–1362 | DOI | MR | Zbl
[13] Moyer C. A., “Numerov extension of transparent boundary conditions for the Schrödinger equation discretized in one dimension”, Amer. J. Phys., 72:3 (2004), 351–358 | DOI
[14] Schulte M., Arnold A., “Discrete transparent boundary conditions for the Schrödinger equation, a compact higher order scheme”, Kinetic and Related Models, 1:1 (2008), 101–125 | MR | Zbl
[15] Zlotnik A. A., Zlotnik I. A., “Ob ustoichivosti semeistva raznostnykh skhem s priblizhennymi prozrachnymi granichnymi usloviyami dlya uravneniya Shredingera na poluosi”, Vestn. MEI, 2008, no. 6, 31–45
[16] Ducomet B., Zlotnik A., Zlotnik I., “On a family of finite-difference schemes with discrete transparent boundary conditions for a generalized Schrödinger equation”, Kinetic and Related Models, 2:1 (2009), 151–180 | DOI | MR
[17] Zlotnik I. A., “Ob ustoichivosti semeistva raznostnykh skhem s priblizhennymi prozrachnymi granichnymi usloviyami dlya nestatsionarnogo uravneniya Shredingera v polupolose”, Vestn. MEI, 2009, no. 6, 127–144
[18] Zlotnik A. A., “Some finite-element and finite-difference methods for solving mathematical physics problems with non-smooth data in n-dimensional cube”, Sovjet. J. Numer. Anal. Math. Modelling, 6:5 (1991), 421–451 | DOI | MR | Zbl
[19] Zlotnik I. A., “Kompyuternoe modelirovanie tunnelnogo effekta”, Vestn. MEI, 2010, no. 6, 10–28