Boundary layers in the solution of singularly perturbed boundary value problem with a degenerate equation having roots of multiplicity two
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 3, pp. 379-383
Cet article a éte moissonné depuis la source Math-Net.Ru
The occurrence of exponential boundary layers in a second-order ordinary differential equation due to the fact that the degenerate equation has a root of multiplicity two is briefly reviewed.
@article{ZVMMF_2011_51_3_a0,
author = {A. B. Vasil'eva},
title = {Boundary layers in the solution of singularly perturbed boundary value problem with a~degenerate equation having roots of multiplicity two},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {379--383},
year = {2011},
volume = {51},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_3_a0/}
}
TY - JOUR AU - A. B. Vasil'eva TI - Boundary layers in the solution of singularly perturbed boundary value problem with a degenerate equation having roots of multiplicity two JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2011 SP - 379 EP - 383 VL - 51 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_3_a0/ LA - ru ID - ZVMMF_2011_51_3_a0 ER -
%0 Journal Article %A A. B. Vasil'eva %T Boundary layers in the solution of singularly perturbed boundary value problem with a degenerate equation having roots of multiplicity two %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2011 %P 379-383 %V 51 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_3_a0/ %G ru %F ZVMMF_2011_51_3_a0
A. B. Vasil'eva. Boundary layers in the solution of singularly perturbed boundary value problem with a degenerate equation having roots of multiplicity two. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 3, pp. 379-383. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_3_a0/
[1] Vasileva A. B., Pilyugin V. S., “Singulyarno vozmuschennye kraevye zadachi s pogranichnym sloem stepennogo tipa”, Differents. ur-niya, 45:3 (2009), 314–324 | MR
[2] Gyunter N. M., Kuzmin R. O., Sbornik zadach po vysshei matematike, Gostekhizdat, M., 1949
[3] Vasileva A. B., Plotnikov A. A., Asimptoticheskaya teoriya singulyarno vozmuschennykh zadach, MGU, M., 2008
[4] Nagumo M., “Über die Difflerentialgleichung $y''=f(x,y,y')$”, Proc. Phys. Math. Soc. Japan, 19 (1937), 554–561