On the theory of countercurrent flow in a rotating viscous heat-conducting gas
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 2, pp. 222-236 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The countercurrent flow in a gas centrifuge is simulated. Mechanical and thermal methods for its excitation are discussed; thermal restructuring, the thermal control of the velocity field, and a shift in the inversion point are analyzed; and the formation of overtone flows in the rarefaction zone is studied.
@article{ZVMMF_2011_51_2_a2,
     author = {O. M. Belotserkovskii and V. B. Betelin and V. D. Borisevich and V. V. Denisenko and I. V. Eriklintsev and S. A. Kozlov and A. V. Konyukhov and A. M. Oparin and O. V. Troshkin},
     title = {On the theory of countercurrent flow in a~rotating viscous heat-conducting gas},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {222--236},
     year = {2011},
     volume = {51},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_2_a2/}
}
TY  - JOUR
AU  - O. M. Belotserkovskii
AU  - V. B. Betelin
AU  - V. D. Borisevich
AU  - V. V. Denisenko
AU  - I. V. Eriklintsev
AU  - S. A. Kozlov
AU  - A. V. Konyukhov
AU  - A. M. Oparin
AU  - O. V. Troshkin
TI  - On the theory of countercurrent flow in a rotating viscous heat-conducting gas
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 222
EP  - 236
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_2_a2/
LA  - ru
ID  - ZVMMF_2011_51_2_a2
ER  - 
%0 Journal Article
%A O. M. Belotserkovskii
%A V. B. Betelin
%A V. D. Borisevich
%A V. V. Denisenko
%A I. V. Eriklintsev
%A S. A. Kozlov
%A A. V. Konyukhov
%A A. M. Oparin
%A O. V. Troshkin
%T On the theory of countercurrent flow in a rotating viscous heat-conducting gas
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 222-236
%V 51
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_2_a2/
%G ru
%F ZVMMF_2011_51_2_a2
O. M. Belotserkovskii; V. B. Betelin; V. D. Borisevich; V. V. Denisenko; I. V. Eriklintsev; S. A. Kozlov; A. V. Konyukhov; A. M. Oparin; O. V. Troshkin. On the theory of countercurrent flow in a rotating viscous heat-conducting gas. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 2, pp. 222-236. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_2_a2/

[1] S. Villani (red.), Obogaschenie urana, Energoatomizdat, M., 1983

[2] Razrabotka i sozdanie gazotsentrifuzhnogo metoda razdeleniya izotopov v SSSR (Rossii), LNPP “Oblik”, S.-Peterburg, 2002

[3] Kofman E. B., “Konstruktsii sovremennykh ultratsentrifug”, Uspekhi fiz. nauk, 25:3 (1941), 340–361

[4] Troshkin O. V., Nontraditional methods in mathematical hydrodynamics, Trans. Math. Monographs. AMS, 144, Providence, RI, USA, 1995 | MR | Zbl

[5] Troshkin O. V., “O nagrevanii gaza krucheniem”, Zh. vychisl. matem. i matem. fiz., 50:6 (2010), 1–10 | MR

[6] Khariton Yu. B., “K voprosu o razdelenii gaza tsentrifugirovaniem”, Zh. tekhn. fiz., 7:14 (1937), 1476–1478

[7] Borisevich V. D., Wood H. G., “Gas centrifugation”, Encyclopedia of Separation Science. Isotope Separations, Acad. Press, London, UK, 2000, 3202–3207

[8] Mulliken R. S., “The separation of isotopes by thermal and pressure diffusion”, J. Amer. Chem. Soc., 44:5 (1922), 1033–1051 | DOI

[9] Urey H. C., “Separation of isotopes”, Rep. Progress Phys., 6 (1939), 48–77 | DOI

[10] Dirak P. A. M., “Dvizhenie v tsentrifuge s samofraktsionirovaniem”, Sobr. nauchn. tr., v. 4, Fizmatlit, M., 2005, 538–545

[11] Cloutman L. D., Gentry R. A., Numerical simulation of the countercurrent flow in a gas centrifuge, LA-8972-MC(UC'22), 1983, DE83-013323, 21 pp.

[12] Subbaramaier, Obogaschenie urana, Glava 4. Tsentrifugirovanie, Energoatomizdat, M., 1983, 179–232

[13] Steenbeck M., “Ergrenzung einer selbstkaskadierenden Axialströmung in einer langen Ultrazentrifuge zur Isotopentrennung”, Kernenergie, 11 (1958), 921–928

[14] Wood H. G., Morton J. B., “Onsager's pancake approximation for the fluid dynamics of a gas centrifuge”, Part 1, J. Fluid Mech., 101 (1980), 1–31 | DOI | MR | Zbl

[15] Kai T., “Basic characteristics of a gas centrifuge (III). Analysis of fluid flow in centrifuges”, J. Nucl. Sci. Technol., 14:4 (1977), 267–281 | DOI

[16] Borisevich V. D., Naumochkin V. V., Smakov B. M., “Mekhanicheskoe i teplovoe vozbuzhdenie techeniya vyazkogo gaza vo vraschayuschemsya tsilindre”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1987, no. 4, 24–28

[17] Borisevich V. D., Levin E. V., Naumochkin V. V., “Chislennoe issledovanie vtorichnykh techenii vyazkogo gaza vo vraschayuschemsya tsilindre pri nalichii istochnikov i stokov”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1989, no. 4, 39–44

[18] Brouwers J. J., “On the compressible flow in a gas centrifuge and its effect on the maximum separative power”, Nucl. Technol., 39 (1978), 311–322

[19] Von Halle, Wood H. G., Lowry R. A., “The effect of vacuum core boundary condition on separation in the gas centrifuge”, Nucl. Technol., 62 (1983), 325–334

[20] Borisevich V. D., Levin E. V., Naumochkin V. V., “Optimalnaya struktura techeniya v gazovoi tsentrifuge”, Atomnaya energiya, 70:1 (1991), 28–32

[21] Israeli M., Ungarish M., “Laminar compressible flow between close rotating disks – an asymptotic and numerical study”, Comput. and Fluids, 11 (1983), 145–157 | DOI | Zbl

[22] Aisen E. M., Borisevich V. D., Levin E. V., “Modelirovanie techeniya i diffuzii v gazovoi tsentrifuge dlya razdeleniya mnogokomponentnykh izotopnykh smesei”, Matem. modelirovanie, 9:4 (1997), 27–38 | Zbl

[23] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49 (1983), 357–393 | DOI | MR | Zbl

[24] Ii G. S., Kharten A., “Neyavnye skhemy TVD dlya giperbolicheskikh sistem uravnenii, zapisannykh v konservativnoi forme otnositelno sistemy krivolineinykh koordinat”, Aerokosmich. tekhn., 1987, no. 11, 11–21

[25] Utyuzhnikov S. V., Konyukhov A. V., Vasilievsky S. V. et al., “Simulation of subsonic and supersonic flows in inductive plasmatrons”, AIAA Journal, 42:9 (2004), 1871–1877 | DOI

[26] Hall G., Watt J. M., Modern numerical methods for ordinary differential Equations, Clarendon Press, Oxford, UK, 1976 | MR | Zbl

[27] Loitsyanskii L. G., Mekhanika zhidkostei i gazov, Izd. 7-e, Drofa, M., 2003

[28] Abramovich G. N., Prikladnaya gazovaya dinamika, Ch. 1, Izd. 5-e, Nauka, M., 1991

[29] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. VI, Gidrodinamika, Nauka, M., 1988