Family of fifth-order three-level schemes for evolution problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 2, pp. 206-221
Voir la notice de l'article provenant de la source Math-Net.Ru
A multiparameter family of fifth-order three-level schemes in time based on compact approximations is presented for solving evolution problems. The schemes are adapted to hyperbolic and parabolic equations and to stiff systems of ordinary differential equations. In the case of hyperbolic equations, a fifth-order accurate scheme in all variables with compact approximations of spatial derivatives is analyzed. Stability estimates are presented, and the dispersive and dissipative properties are examined.
@article{ZVMMF_2011_51_2_a1,
author = {A. I. Tolstykh},
title = {Family of fifth-order three-level schemes for evolution problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {206--221},
publisher = {mathdoc},
volume = {51},
number = {2},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_2_a1/}
}
TY - JOUR AU - A. I. Tolstykh TI - Family of fifth-order three-level schemes for evolution problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2011 SP - 206 EP - 221 VL - 51 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_2_a1/ LA - ru ID - ZVMMF_2011_51_2_a1 ER -
A. I. Tolstykh. Family of fifth-order three-level schemes for evolution problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 2, pp. 206-221. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_2_a1/