@article{ZVMMF_2011_51_2_a1,
author = {A. I. Tolstykh},
title = {Family of fifth-order three-level schemes for evolution problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {206--221},
year = {2011},
volume = {51},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_2_a1/}
}
A. I. Tolstykh. Family of fifth-order three-level schemes for evolution problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 2, pp. 206-221. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_2_a1/
[1] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990 | MR
[2] Tolstykh A. I., “Two-step fifth-order methods for evolutionary problems with positive operators”, Positivity, 2 (1998), 193–219 | DOI | MR | Zbl
[3] Tolstykh A. I., “Ob odnom klasse netsentrirovannykh kompaktnykh skhem pyatogo poryadka, osnovannom na approksimatsiyakh Pade”, Dokl. RAN, 326:1 (1991), 72–77 | MR
[4] Lipavskii M. V., Tolstykh A. I., “O sravnitelnoi effektivnosti skhem s netsentrirovannymi kompaktnymi approksimatsiyami”, Zh. vychisl. matem. i matem. fiz., 39:10 (1999), 1705–1720 | MR
[5] Enright W. H., “Second derivative multistep methods for stiff ordinary differential equations”, SIAM J. Numer. Analys., 11:2 (1974), 321–331 | DOI | MR | Zbl
[6] Hall Cr. (ed.), Modern numerical methods for ordinary differential equation, Clarendon Press, Oxford, 1976 | MR | Zbl
[7] Dekker K., Verwer J. G., Stability of Runge–Kutta methods for stiff nonlinear differential equations, North-Holland, Amsterdam. etc., 1984 | MR | Zbl
[8] Godunov S. K., Ryabenkii V. S., Raznostnye skhemy, Nauka, M., 1973 | Zbl