On the multioperator method for constructing approximations and finite difference schemes of an arbitrarily high order
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 1, pp. 56-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Main results of the development of the multioperator method for constructing approximations of prescribed order are presented. Multioperators for various approximation problems are considered. The focus is on the multioperators for convective terms in fluid dynamics equations. Types of multioperator schemes are described and possibilities for their optimization are discussed. Results of solving benchmark problems in the case of tenth- and 18th-order schemes are presented.
@article{ZVMMF_2011_51_1_a4,
     author = {A. I. Tolstykh},
     title = {On the multioperator method for constructing approximations and finite difference schemes of an arbitrarily high order},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {56--73},
     year = {2011},
     volume = {51},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_1_a4/}
}
TY  - JOUR
AU  - A. I. Tolstykh
TI  - On the multioperator method for constructing approximations and finite difference schemes of an arbitrarily high order
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 56
EP  - 73
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_1_a4/
LA  - ru
ID  - ZVMMF_2011_51_1_a4
ER  - 
%0 Journal Article
%A A. I. Tolstykh
%T On the multioperator method for constructing approximations and finite difference schemes of an arbitrarily high order
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 56-73
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_1_a4/
%G ru
%F ZVMMF_2011_51_1_a4
A. I. Tolstykh. On the multioperator method for constructing approximations and finite difference schemes of an arbitrarily high order. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 1, pp. 56-73. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_1_a4/

[1] Liu X.-D., Osher S., Chan T., “Weighted essentially non-oscillatory schemes”, J. Comput. Phys., 115 (1994), 200–212 | DOI | MR | Zbl

[2] Tolstykh A. I., “Multioperatornye skhemy proizvolnogo poryadka, ispolzuyuschie netsentrirovannye kompaktnye approksimatsii”, Dokl. RAN, 366:3 (1999), 319–322 | MR | Zbl

[3] Tolstykh A. I., “O postroenii skhem zadannogo poryadka s lineinymi kombinatsiyami operatorov”, Zh. vychisl. matem. i matem. fiz., 40:8 (2000), 1206–1220 | MR | Zbl

[4] Lipavskii M. V., Tolstykh A. I., “Multioperatornye kompaktnye skhemy 5-go i 7-go poryadkov”, Zh. vychisl. matem. i matem. fiz., 43:7 (2003), 1018–1034 | MR | Zbl

[5] Lipavskii M. V., Tolstykh A. I., Chigerev E. N., “O skheme s multioperatornymi approksimatsiyami 9-go poryadka dlya parallelnykh vychislenii i o ee primenenii v zadachakh pryamogo chislennogo modelirovaniya”, Zh. vychisl. matem. i matem. fiz., 46:8 (2006), 1433–1452 | MR

[6] Lipavskii M. V., Chigerev E. N., Chislennoe issledovanie vikhrevykh dvizhenii zhidkosti s pomoschyu netsentrirovannykh kompaktnykh approksimatsii, VTs RAN, M., 2004

[7] Savelev A. D., Tolstykh A. I., Shirobokov D. A., “O primenenii kompaktnykh i multioperatornykh skhem dlya chislennogo modelirovaniya akusticheskikh polei, vozbuzhdaemykh volnami neustoichivosti v sverkhzvukovykh struyakh”, Zh. vychisl. matem. i matem. fiz., 49 (2009), 1280–1294 | MR

[8] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990 | MR

[9] Tolstykh A. I., High accuracy non-centered compact difference schemes for fluid dynamics applic, World Scientific, Singapore, 1994 | Zbl

[10] Lipavskii M. V., Tolstykh A. I., “O sravnitelnoi effektivnosti skhem s netsentrirovannymi kompaktnymi approksimatsiyami”, Zh. vychisl. matem. i matem. fiz., 39:10 (1999), 1705–1720 | MR

[11] Tolstykh A. I., “Ob odnom semeistve kompaktnykh approksimatsii i osnovannykh na nikh multioperatornykh approksimatsiyakh zadannogo poryadka”, Dokl. RAN, 403:2 (2005), 172–177 | MR | Zbl

[12] Tolstykh A. I., “O metode chislennogo resheniya uravnenii Nave–Stoksa szhimaemogo gaza v shirokom diapazone chisel Reinoldsa”, Dokl. AN SSSR, 210:2 (1973), 48–51

[13] Tolstykh A. I., “Ob odnom klasse netsentrirovannykh kompaktnykh raznostnykh skhem pyatogo poryadka, osnovannykh na approksimatsiyakh Pade”, Dokl. AN SSSR, 319:1 (1991), 72–77 | MR | Zbl

[14] Tolstykh A. I., “Development of arbitrary-order multioperators-based schemes for parallel calculations. 1. Higher-than-fifth order approximations to convection terms”, J. Comput. Phys., 225 (2007), 2333–2353 | DOI | MR | Zbl

[15] Tolstykh A. I., “Development of arbitrary-order multioperators-based schemes for parallel calculations. 2. Families of compact approximations with two-diagonal inversions and related multioperators”, J. Comput. Phys., 227 (2008), 2922–2940 | DOI | MR | Zbl

[16] Lele S. K., “Compact finite difference schemes with spectral-like resolution”, J. Comput. Phys., 102 (1992), 16–42 | DOI | MR

[17] Tam C. K. W., Webb J. C., “Dispersion-relation preserving finite difference schemes for computational acoustics”, J. Comput. Phys., 107 (1993), 262 | DOI | MR | Zbl

[18] Adams N. A., Sharif K., “A high-resolution compact-ENO scheme for shock-turbulence interaction problems”, J. Comput. Phys., 127 (1996), 27–51 | DOI | MR | Zbl

[19] Tam C. K. W., Fourth Computational Aeroacoustics (CAA) Workshop on benchmark problems, NASA/CP-2004-2159, 2004

[20] Tolstykh A. I., Lipavskii M. V., Proc. 22nd Internat. Conf. on Parallel Comput. Fluid Dynamics (Kaohsuing, Taiwan, 2010)