@article{ZVMMF_2011_51_1_a4,
author = {A. I. Tolstykh},
title = {On the multioperator method for constructing approximations and finite difference schemes of an arbitrarily high order},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {56--73},
year = {2011},
volume = {51},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_1_a4/}
}
TY - JOUR AU - A. I. Tolstykh TI - On the multioperator method for constructing approximations and finite difference schemes of an arbitrarily high order JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2011 SP - 56 EP - 73 VL - 51 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_1_a4/ LA - ru ID - ZVMMF_2011_51_1_a4 ER -
%0 Journal Article %A A. I. Tolstykh %T On the multioperator method for constructing approximations and finite difference schemes of an arbitrarily high order %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2011 %P 56-73 %V 51 %N 1 %U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_1_a4/ %G ru %F ZVMMF_2011_51_1_a4
A. I. Tolstykh. On the multioperator method for constructing approximations and finite difference schemes of an arbitrarily high order. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 1, pp. 56-73. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_1_a4/
[1] Liu X.-D., Osher S., Chan T., “Weighted essentially non-oscillatory schemes”, J. Comput. Phys., 115 (1994), 200–212 | DOI | MR | Zbl
[2] Tolstykh A. I., “Multioperatornye skhemy proizvolnogo poryadka, ispolzuyuschie netsentrirovannye kompaktnye approksimatsii”, Dokl. RAN, 366:3 (1999), 319–322 | MR | Zbl
[3] Tolstykh A. I., “O postroenii skhem zadannogo poryadka s lineinymi kombinatsiyami operatorov”, Zh. vychisl. matem. i matem. fiz., 40:8 (2000), 1206–1220 | MR | Zbl
[4] Lipavskii M. V., Tolstykh A. I., “Multioperatornye kompaktnye skhemy 5-go i 7-go poryadkov”, Zh. vychisl. matem. i matem. fiz., 43:7 (2003), 1018–1034 | MR | Zbl
[5] Lipavskii M. V., Tolstykh A. I., Chigerev E. N., “O skheme s multioperatornymi approksimatsiyami 9-go poryadka dlya parallelnykh vychislenii i o ee primenenii v zadachakh pryamogo chislennogo modelirovaniya”, Zh. vychisl. matem. i matem. fiz., 46:8 (2006), 1433–1452 | MR
[6] Lipavskii M. V., Chigerev E. N., Chislennoe issledovanie vikhrevykh dvizhenii zhidkosti s pomoschyu netsentrirovannykh kompaktnykh approksimatsii, VTs RAN, M., 2004
[7] Savelev A. D., Tolstykh A. I., Shirobokov D. A., “O primenenii kompaktnykh i multioperatornykh skhem dlya chislennogo modelirovaniya akusticheskikh polei, vozbuzhdaemykh volnami neustoichivosti v sverkhzvukovykh struyakh”, Zh. vychisl. matem. i matem. fiz., 49 (2009), 1280–1294 | MR
[8] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990 | MR
[9] Tolstykh A. I., High accuracy non-centered compact difference schemes for fluid dynamics applic, World Scientific, Singapore, 1994 | Zbl
[10] Lipavskii M. V., Tolstykh A. I., “O sravnitelnoi effektivnosti skhem s netsentrirovannymi kompaktnymi approksimatsiyami”, Zh. vychisl. matem. i matem. fiz., 39:10 (1999), 1705–1720 | MR
[11] Tolstykh A. I., “Ob odnom semeistve kompaktnykh approksimatsii i osnovannykh na nikh multioperatornykh approksimatsiyakh zadannogo poryadka”, Dokl. RAN, 403:2 (2005), 172–177 | MR | Zbl
[12] Tolstykh A. I., “O metode chislennogo resheniya uravnenii Nave–Stoksa szhimaemogo gaza v shirokom diapazone chisel Reinoldsa”, Dokl. AN SSSR, 210:2 (1973), 48–51
[13] Tolstykh A. I., “Ob odnom klasse netsentrirovannykh kompaktnykh raznostnykh skhem pyatogo poryadka, osnovannykh na approksimatsiyakh Pade”, Dokl. AN SSSR, 319:1 (1991), 72–77 | MR | Zbl
[14] Tolstykh A. I., “Development of arbitrary-order multioperators-based schemes for parallel calculations. 1. Higher-than-fifth order approximations to convection terms”, J. Comput. Phys., 225 (2007), 2333–2353 | DOI | MR | Zbl
[15] Tolstykh A. I., “Development of arbitrary-order multioperators-based schemes for parallel calculations. 2. Families of compact approximations with two-diagonal inversions and related multioperators”, J. Comput. Phys., 227 (2008), 2922–2940 | DOI | MR | Zbl
[16] Lele S. K., “Compact finite difference schemes with spectral-like resolution”, J. Comput. Phys., 102 (1992), 16–42 | DOI | MR
[17] Tam C. K. W., Webb J. C., “Dispersion-relation preserving finite difference schemes for computational acoustics”, J. Comput. Phys., 107 (1993), 262 | DOI | MR | Zbl
[18] Adams N. A., Sharif K., “A high-resolution compact-ENO scheme for shock-turbulence interaction problems”, J. Comput. Phys., 127 (1996), 27–51 | DOI | MR | Zbl
[19] Tam C. K. W., Fourth Computational Aeroacoustics (CAA) Workshop on benchmark problems, NASA/CP-2004-2159, 2004
[20] Tolstykh A. I., Lipavskii M. V., Proc. 22nd Internat. Conf. on Parallel Comput. Fluid Dynamics (Kaohsuing, Taiwan, 2010)