On periodic solutions to singularly perturbed parabolic problems in the case of multiple roots of the degenerate equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 1, pp. 44-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For singularly perturbed parabolic problems, asymptotic expansions of time-periodic solutions with boundary layers in a neighborhood of interval's endpoints are constructed and justified in the case where the degenerate equation has a double or a triple root.
@article{ZVMMF_2011_51_1_a3,
     author = {V. F. Butuzov},
     title = {On periodic solutions to singularly perturbed parabolic problems in the case of multiple roots of the degenerate equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {44--55},
     year = {2011},
     volume = {51},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_1_a3/}
}
TY  - JOUR
AU  - V. F. Butuzov
TI  - On periodic solutions to singularly perturbed parabolic problems in the case of multiple roots of the degenerate equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 44
EP  - 55
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_1_a3/
LA  - ru
ID  - ZVMMF_2011_51_1_a3
ER  - 
%0 Journal Article
%A V. F. Butuzov
%T On periodic solutions to singularly perturbed parabolic problems in the case of multiple roots of the degenerate equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 44-55
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_1_a3/
%G ru
%F ZVMMF_2011_51_1_a3
V. F. Butuzov. On periodic solutions to singularly perturbed parabolic problems in the case of multiple roots of the degenerate equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 1, pp. 44-55. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_1_a3/

[1] Dorodnitsyn A. A., “Asimptoticheskoe reshenie uravneniya Van der Polya”, Prikl. matem. i mekhan., 11:3 (1947), 313–328 | MR

[2] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vyssh. shkola, M., 1990 | MR

[3] Pao C. V., Nonlinear parabolic and elliptic equations, Plenum Press, New York, 1992 | MR