Choosing a cost functional and a difference scheme in the optimal control of metal solidification
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 1, pp. 24-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The optimal control of solidification in metal casting is considered. The underlying mathematical model is based on a three-dimensional two-phase initial–boundary value problem of the Stefan type. The study is focused on choosing a cost functional in the optimal control of solidification and choosing a difference scheme for solving the direct problem. The results of the study are described and analyzed.
@article{ZVMMF_2011_51_1_a1,
     author = {A. V. Albu and V. I. Zubov},
     title = {Choosing a~cost functional and a~difference scheme in the optimal control of metal solidification},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {24--38},
     year = {2011},
     volume = {51},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_1_a1/}
}
TY  - JOUR
AU  - A. V. Albu
AU  - V. I. Zubov
TI  - Choosing a cost functional and a difference scheme in the optimal control of metal solidification
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 24
EP  - 38
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_1_a1/
LA  - ru
ID  - ZVMMF_2011_51_1_a1
ER  - 
%0 Journal Article
%A A. V. Albu
%A V. I. Zubov
%T Choosing a cost functional and a difference scheme in the optimal control of metal solidification
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 24-38
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_1_a1/
%G ru
%F ZVMMF_2011_51_1_a1
A. V. Albu; V. I. Zubov. Choosing a cost functional and a difference scheme in the optimal control of metal solidification. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 1, pp. 24-38. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_1_a1/

[1] Albu A. F., Zubov V. I., “Matematicheskoe modelirovanie i issledovanie protsessa kristallizatsii metalla v liteinom dele”, Zh. vychisl. matem. i matem. fiz., 47:5 (2007), 882–902 | MR

[2] Albu A. F., Zubov V. I., “Ob optimalnom upravlenii protsessom kristallizatsii metalla v liteinom dele”, Zh. vychisl. matem. i matem. fiz., 48:5 (2008), 851–862 | MR | Zbl

[3] Albu A. F., Zubov V. I., “Vychislenie gradienta funktsionala v odnoi zadache optimalnogo upravleniya, svyazannoi s kristallizatsiei metalla”, Zh. vychisl. matem. i matem. fiz., 49:1 (2009), 51–75 | MR

[4] Lykov A. V., Teoriya teploprovodnosti, Vyssh. shkola, M., 1967 | Zbl

[5] Rose M., “A method for calculating solutions of parabolic equations with a free boundary”, Math. Comput., 14 (1960), 249–256 | DOI | MR | Zbl

[6] White R. E., “An enthalpy formulation of the Stephan problem”, SIAM J. Numer. Analys., 19:6 (1982), 1129–1157 | DOI | MR | Zbl

[7] White R. E., “A numerical solution of the enthalpy formulation of the Stephan problem”, SIAM J. Numer. Analys., 19:6 (1982), 1158–1172 | DOI | MR | Zbl

[8] Albu A. F., Zubov V. I., “O modifikatsii odnoi skhemy dlya rascheta protsessa plavleniya”, Zh. vychisl. matem. i matem. fiz., 41:9 (2001), 1434–1443 | MR | Zbl

[9] Evtushenko Y. G., “Computation of exact gradients in distributed dynamic systems”, Optimizat. Methods and Software, 9 (1998), 45–75 | DOI | MR | Zbl