@article{ZVMMF_2011_51_1_a0,
author = {A. F. Izmailov},
title = {On the limiting properties of dual trajectories in the {Lagrange} multipliers method},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {3--23},
year = {2011},
volume = {51},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_1_a0/}
}
TY - JOUR AU - A. F. Izmailov TI - On the limiting properties of dual trajectories in the Lagrange multipliers method JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2011 SP - 3 EP - 23 VL - 51 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_1_a0/ LA - ru ID - ZVMMF_2011_51_1_a0 ER -
A. F. Izmailov. On the limiting properties of dual trajectories in the Lagrange multipliers method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 1, pp. 3-23. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_1_a0/
[1] Bertsekas D., Uslovnaya optimizatsiya i metody mnozhitelei Lagranzha, Radio i svyaz, M., 1987 | MR | Zbl
[2] Izmailov A. F., Solodov M. V., Chislennye metody optimizatsii, Izd. 2-e, pererab. i dop., Fizmatlit, M., 2008
[3] http://www.cse.scitech.ac.uk/nag/lancelot/lancelot.shtml
[4] http://www.ime.usp.br/~egbirgin/tango/
[5] Andreani R., Birgin E. G., Martinez J. M., Schuverdt M. L., “Augmented Lagrangian methods under the constant positive linear dependence constraint qualification”, Math. Program., 111 (2008), 5–32 | DOI | MR | Zbl
[6] Andreani R., Birgin E. G., Martinez J. M., Schuverdt M. L., “On augmented Lagrangian methods with general lower-level constraints”, SIAM J. Optimizat., 18:4 (2007), 1286–1309 | DOI | MR | Zbl
[7] Izmailov A. F., Solodov M. V., “On attraction of Newton-type iterates to multipliers violating second-order sufficiency conditions”, Math. Program., 117:1–2 (2009), 271–304 | DOI | MR | Zbl
[8] Izmailov A. F., Solodov M. V., “Examples of dual behaviour of Newton-type methods on optimization problems with degenerate constraints”, Comput. Optimizat and Appl., 42:2 (2009), 231–264 | DOI | MR | Zbl
[9] Izmailov A. F., Solodov M. V., “On attraction of linearly constrained Lagrangian methods and of stabilized and quasi-Newton SQP methods to critical multipliers”, Math. Program. | DOI
[10] Wright S. J., “Superlinear convergence of a stabilized SQP method to a degenerate solution”, Comput. Optimizat. and Appl., 11 (1998), 253–275 | DOI | MR | Zbl
[11] Wright S. J., “Modifying SQP for degenerate problems”, SIAM J. Optimizat., 13 (2002), 470–497 | DOI | MR | Zbl
[12] Wright S. J., “Constraint identification and algorithm stabilization for degenerate nonlinear programs”, Math. Program., 95 (2003), 137–160 | DOI | MR | Zbl
[13] Izmailov A. F., Solodov M. V., “Newton-type methods for optimization problems without constraint qualifications”, SIAM J. Optimizat., 15:1 (2004), 210–228 | DOI | MR | Zbl
[14] Wright S. J., “An algorithm for degenerate nonlinear programming with rapid local convergence”, SIAM J. Optimizat., 15 (2005), 673–696 | DOI | MR | Zbl
[15] Golishnikov M. M., Izmailov A. F., “Nyutonovskie metody dlya zadach uslovnoi optimizatsii s neregulyarnymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 46:8 (2006), 1369–1391 | MR
[16] Izmailov A. F., Solodov M. V., Stabilized SQP revisited September 2009 (Revised February 2010), Available at http://www.impa.br/~optim/solodov.html
[17] Andreani R., Martinez J. M., Schuverdt M. L., “On second-order optimality conditions for nonlinear programming”, Optimization, 56:5 (2007), 529–542 | DOI | MR | Zbl