On the limiting properties of dual trajectories in the Lagrange multipliers method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 1, pp. 3-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the method of Lagrange multipliers (i.e., augmented Lagrangians), possible and typical scenarios for the asymptotic behavior of dual trajectories are examined in the case where the Lagrange multiplier is nonunique. The influence of these scenarios on the convergence rate is also investigated.
@article{ZVMMF_2011_51_1_a0,
     author = {A. F. Izmailov},
     title = {On the limiting properties of dual trajectories in the {Lagrange} multipliers method},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {3--23},
     year = {2011},
     volume = {51},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_1_a0/}
}
TY  - JOUR
AU  - A. F. Izmailov
TI  - On the limiting properties of dual trajectories in the Lagrange multipliers method
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 3
EP  - 23
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_1_a0/
LA  - ru
ID  - ZVMMF_2011_51_1_a0
ER  - 
%0 Journal Article
%A A. F. Izmailov
%T On the limiting properties of dual trajectories in the Lagrange multipliers method
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 3-23
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_1_a0/
%G ru
%F ZVMMF_2011_51_1_a0
A. F. Izmailov. On the limiting properties of dual trajectories in the Lagrange multipliers method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 1, pp. 3-23. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_1_a0/

[1] Bertsekas D., Uslovnaya optimizatsiya i metody mnozhitelei Lagranzha, Radio i svyaz, M., 1987 | MR | Zbl

[2] Izmailov A. F., Solodov M. V., Chislennye metody optimizatsii, Izd. 2-e, pererab. i dop., Fizmatlit, M., 2008

[3] http://www.cse.scitech.ac.uk/nag/lancelot/lancelot.shtml

[4] http://www.ime.usp.br/~egbirgin/tango/

[5] Andreani R., Birgin E. G., Martinez J. M., Schuverdt M. L., “Augmented Lagrangian methods under the constant positive linear dependence constraint qualification”, Math. Program., 111 (2008), 5–32 | DOI | MR | Zbl

[6] Andreani R., Birgin E. G., Martinez J. M., Schuverdt M. L., “On augmented Lagrangian methods with general lower-level constraints”, SIAM J. Optimizat., 18:4 (2007), 1286–1309 | DOI | MR | Zbl

[7] Izmailov A. F., Solodov M. V., “On attraction of Newton-type iterates to multipliers violating second-order sufficiency conditions”, Math. Program., 117:1–2 (2009), 271–304 | DOI | MR | Zbl

[8] Izmailov A. F., Solodov M. V., “Examples of dual behaviour of Newton-type methods on optimization problems with degenerate constraints”, Comput. Optimizat and Appl., 42:2 (2009), 231–264 | DOI | MR | Zbl

[9] Izmailov A. F., Solodov M. V., “On attraction of linearly constrained Lagrangian methods and of stabilized and quasi-Newton SQP methods to critical multipliers”, Math. Program. | DOI

[10] Wright S. J., “Superlinear convergence of a stabilized SQP method to a degenerate solution”, Comput. Optimizat. and Appl., 11 (1998), 253–275 | DOI | MR | Zbl

[11] Wright S. J., “Modifying SQP for degenerate problems”, SIAM J. Optimizat., 13 (2002), 470–497 | DOI | MR | Zbl

[12] Wright S. J., “Constraint identification and algorithm stabilization for degenerate nonlinear programs”, Math. Program., 95 (2003), 137–160 | DOI | MR | Zbl

[13] Izmailov A. F., Solodov M. V., “Newton-type methods for optimization problems without constraint qualifications”, SIAM J. Optimizat., 15:1 (2004), 210–228 | DOI | MR | Zbl

[14] Wright S. J., “An algorithm for degenerate nonlinear programming with rapid local convergence”, SIAM J. Optimizat., 15 (2005), 673–696 | DOI | MR | Zbl

[15] Golishnikov M. M., Izmailov A. F., “Nyutonovskie metody dlya zadach uslovnoi optimizatsii s neregulyarnymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 46:8 (2006), 1369–1391 | MR

[16] Izmailov A. F., Solodov M. V., Stabilized SQP revisited September 2009 (Revised February 2010), Available at http://www.impa.br/~optim/solodov.html

[17] Andreani R., Martinez J. M., Schuverdt M. L., “On second-order optimality conditions for nonlinear programming”, Optimization, 56:5 (2007), 529–542 | DOI | MR | Zbl

[18] http://w3.impa.br/~optim/DEGEN_collection.zip