Behavior of solutions to elliptic boundary value problems in a neighborhood of corner points of discontinuity lines of the coefficients
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 12, pp. 2253-2259 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A representation of the solution to an elliptic boundary value problem in the vicinity of a corner point on the discontinuity line of the coefficient of the higher order derivative is constructed. The study is based on the method of additive separation of singularities proposed by Kondrat’ev.
@article{ZVMMF_2011_51_12_a9,
     author = {A. N. Bogolyubov and I. E. Mogilevskii},
     title = {Behavior of solutions to elliptic boundary value problems in a~neighborhood of corner points of discontinuity lines of the coefficients},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2253--2259},
     year = {2011},
     volume = {51},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a9/}
}
TY  - JOUR
AU  - A. N. Bogolyubov
AU  - I. E. Mogilevskii
TI  - Behavior of solutions to elliptic boundary value problems in a neighborhood of corner points of discontinuity lines of the coefficients
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 2253
EP  - 2259
VL  - 51
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a9/
LA  - ru
ID  - ZVMMF_2011_51_12_a9
ER  - 
%0 Journal Article
%A A. N. Bogolyubov
%A I. E. Mogilevskii
%T Behavior of solutions to elliptic boundary value problems in a neighborhood of corner points of discontinuity lines of the coefficients
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 2253-2259
%V 51
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a9/
%G ru
%F ZVMMF_2011_51_12_a9
A. N. Bogolyubov; I. E. Mogilevskii. Behavior of solutions to elliptic boundary value problems in a neighborhood of corner points of discontinuity lines of the coefficients. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 12, pp. 2253-2259. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a9/

[1] Birman M. Sh., Solomyak M. Z., “$L_2$-teoriya operatora Maksvella v proizvolnykh oblastyakh”, Uspekhi matem. nauk, 42:6 (1987), 61–76 | MR | Zbl

[2] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno-gladkoi granitsei, Nauka, M., 1991

[3] Kondratev V. A., Oleinik O. A., “Kraevye zadachi dlya uravnenii s chastnymi proizvodnymi v negladkikh oblastyakh”, Uspekhi matem. nauk, 38:2 (1983), 3–76 | MR

[4] Bogolyubov A. N., Delitsyn A. L., Mogilevskii I. E., “O matematicheskom obosnovanii variatsionno-raznostnogo podkhoda k chislennomu modelirovaniyu volnoveduschikh sistem”, Vestn. MGU. Ser. 3. Fiz., astron., 1998, no. 5, 14 | MR

[5] Ilin V. A., “O vozbuzhdenii neidealnykh radiovolnovodov”, Dokl. AN SSSR, 98:6 (1954), 925–928 | MR

[6] Kondpatev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tp. Mosk. matem. ob-va, 16, 1967, 227–313

[7] Kondratev V. A., “Osobennosti resheniya zadachi Dirikhle dlya ellipticheskikh uravnenii vtorogo poryadka v okrestnosti rebra”, Differents. ur-niya, 13:11 (1977), 2026–2032 | MR

[8] Bogolyubov A. N., Delitsyn A. L., Mogilevskii I. E., Sveshnikov A. G., “Problema vychisleniya volnovodnykh mod pri nalichii vkhodyaschikh reber”, Zh. radioelektroniki (elektronnyi zhurnal), 2001, 8 ; http://www.jre.cplire.ru | Zbl

[9] Bogolyubov A. N., Delitsyn A. L., Mogilevskii I. E., Sveshnikov A. G., “Osobennosti normalnykh voln neodnorodnogo volnovoda s vkhodyaschimi rebrami”, Radiotekhn. i elektronika, 48:7 (2003), 1–8 | MR

[10] Grinberg G. A., Izbrannye voprosy matematicheskoi teorii elektricheskikh i magnitnykh yavlenii, Izd-vo AN SSSR, M., 1948 | Zbl

[11] Vladimirov V. S., Zharinov V. V., Uravneniya matematicheskoi fiziki, Fizmatlit, M., 2003 | Zbl

[12] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Fizmatlit, M., 2004 | Zbl