Fourier method in an initial-boundary value problem for a first-order partial differential equation with involution
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 12, pp. 2233-2246 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Fourier method is used to obtain a classical solution of an initial-boundary value problem for a first-order partial differential equation with involution in the function and its derivative. The series $\Sigma$ produced by the Fourier method as a formal solution of the problem is represented as $\Sigma=S_0+(\Sigma-\Sigma_0)$, where $\Sigma_0$ is the formal solution of a special reference problem for which the sum $S_0$ can be explicitly calculated. Refined asymptotic formulas for the solution of the Dirac system are used to show that the series $\Sigma-\Sigma_0$ and the series obtained from it by termwise differentiation converge uniformly. Minimal smoothness assumptions are imposed on the initial data of the problem.
@article{ZVMMF_2011_51_12_a7,
     author = {M. Sh. Burlutskaya and A. P. Khromov},
     title = {Fourier method in an initial-boundary value problem for a~first-order partial differential equation with involution},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2233--2246},
     year = {2011},
     volume = {51},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a7/}
}
TY  - JOUR
AU  - M. Sh. Burlutskaya
AU  - A. P. Khromov
TI  - Fourier method in an initial-boundary value problem for a first-order partial differential equation with involution
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 2233
EP  - 2246
VL  - 51
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a7/
LA  - ru
ID  - ZVMMF_2011_51_12_a7
ER  - 
%0 Journal Article
%A M. Sh. Burlutskaya
%A A. P. Khromov
%T Fourier method in an initial-boundary value problem for a first-order partial differential equation with involution
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 2233-2246
%V 51
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a7/
%G ru
%F ZVMMF_2011_51_12_a7
M. Sh. Burlutskaya; A. P. Khromov. Fourier method in an initial-boundary value problem for a first-order partial differential equation with involution. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 12, pp. 2233-2246. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a7/

[1] Burlutskaya M. Sh., Khromov A. P., “O klassicheskom reshenii smeshannoi zadachi dlya uravneniya pervogo poryadka s involyutsiei”, Vestn. Voronezhskogo gos. un-ta. Ser. Fizika. Matematika, 2010, no. 2, 26–33

[2] Burlutskaya M. Sh., Khromov A. P., “Klassicheskoe reshenie dlya smeshannoi zadachi s involyutsiei”, Dokl. RAN, 435:2 (2010), 151–154 | MR | Zbl

[3] Andreev A. A., “O korrektnosti kraevykh zadach dlya nekotorykh uravnenii v chastnykh proizvodnykh s karlemanovskim sdvigom”, Tr. II mezhdunar. seminara “Differents. ur-niya i ikh prilozh.”, Samara, 1998, 5–18

[4] Andreev A. A., “Ob analogakh klassicheskikh kraevykh zadach dlya odnogo differentsialnogo uravneniya vtorogo poryadka s otklonyayuschimsya argumentom”, Differets. ur-niya, 40:5 (2004), 1126–1128 | Zbl

[5] Burlutskaya M. Sh., Kurdyumov V. P., Lukonina A. S., Khromov A. P., “Funktsionalno-differentsialnyi operator s involyutsiei”, Dokl. RAN, 414:1 (2007), 443–446 | MR | Zbl

[6] Steklov V. A., Osnovnye zadachi matematicheskoi fiziki, Nauka, M., 1983 | MR | Zbl

[7] Krylov A. N., O nekotorykh differentsialnykh uravneniyakh matematicheskoi fiziki, imeyuschikh prilozheniya v tekhnicheskikh voprosakh, GITTL, L., 1950

[8] Chernyatin V. A., Obosnovanie metoda Fure v smeshannoi zadache dlya uravnenii v chastnykh proizvodnykh, MGU, M., 1991 | MR

[9] Rappoport I. M., O nekotorykh asimptoticheskikh metodakh v teorii differentsialnykh uravnenii, Izd-vo AN USSR, Kiev, 1954

[10] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR