@article{ZVMMF_2011_51_12_a7,
author = {M. Sh. Burlutskaya and A. P. Khromov},
title = {Fourier method in an initial-boundary value problem for a~first-order partial differential equation with involution},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {2233--2246},
year = {2011},
volume = {51},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a7/}
}
TY - JOUR AU - M. Sh. Burlutskaya AU - A. P. Khromov TI - Fourier method in an initial-boundary value problem for a first-order partial differential equation with involution JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2011 SP - 2233 EP - 2246 VL - 51 IS - 12 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a7/ LA - ru ID - ZVMMF_2011_51_12_a7 ER -
%0 Journal Article %A M. Sh. Burlutskaya %A A. P. Khromov %T Fourier method in an initial-boundary value problem for a first-order partial differential equation with involution %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2011 %P 2233-2246 %V 51 %N 12 %U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a7/ %G ru %F ZVMMF_2011_51_12_a7
M. Sh. Burlutskaya; A. P. Khromov. Fourier method in an initial-boundary value problem for a first-order partial differential equation with involution. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 12, pp. 2233-2246. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a7/
[1] Burlutskaya M. Sh., Khromov A. P., “O klassicheskom reshenii smeshannoi zadachi dlya uravneniya pervogo poryadka s involyutsiei”, Vestn. Voronezhskogo gos. un-ta. Ser. Fizika. Matematika, 2010, no. 2, 26–33
[2] Burlutskaya M. Sh., Khromov A. P., “Klassicheskoe reshenie dlya smeshannoi zadachi s involyutsiei”, Dokl. RAN, 435:2 (2010), 151–154 | MR | Zbl
[3] Andreev A. A., “O korrektnosti kraevykh zadach dlya nekotorykh uravnenii v chastnykh proizvodnykh s karlemanovskim sdvigom”, Tr. II mezhdunar. seminara “Differents. ur-niya i ikh prilozh.”, Samara, 1998, 5–18
[4] Andreev A. A., “Ob analogakh klassicheskikh kraevykh zadach dlya odnogo differentsialnogo uravneniya vtorogo poryadka s otklonyayuschimsya argumentom”, Differets. ur-niya, 40:5 (2004), 1126–1128 | Zbl
[5] Burlutskaya M. Sh., Kurdyumov V. P., Lukonina A. S., Khromov A. P., “Funktsionalno-differentsialnyi operator s involyutsiei”, Dokl. RAN, 414:1 (2007), 443–446 | MR | Zbl
[6] Steklov V. A., Osnovnye zadachi matematicheskoi fiziki, Nauka, M., 1983 | MR | Zbl
[7] Krylov A. N., O nekotorykh differentsialnykh uravneniyakh matematicheskoi fiziki, imeyuschikh prilozheniya v tekhnicheskikh voprosakh, GITTL, L., 1950
[8] Chernyatin V. A., Obosnovanie metoda Fure v smeshannoi zadache dlya uravnenii v chastnykh proizvodnykh, MGU, M., 1991 | MR
[9] Rappoport I. M., O nekotorykh asimptoticheskikh metodakh v teorii differentsialnykh uravnenii, Izd-vo AN USSR, Kiev, 1954
[10] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR