The theory of regularized traces of Sturm–Liouville operators as applied to approximate calculation of eigenvalues and eigenfunctions of certain singular operators
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 12, pp. 2209-2232 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The effectiveness of the theory of regularized traces as applied to the approximate calculation of eigenvalues and eigenfunctions is demonstrated for certain singular differential operators. Singular operators of the Bessel type and operators from fluid dynamics and mathematical physics are considered.
@article{ZVMMF_2011_51_12_a6,
     author = {M. K. Kerimov},
     title = {The theory of regularized traces of {Sturm{\textendash}Liouville} operators as applied to approximate calculation of eigenvalues and eigenfunctions of certain singular operators},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2209--2232},
     year = {2011},
     volume = {51},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a6/}
}
TY  - JOUR
AU  - M. K. Kerimov
TI  - The theory of regularized traces of Sturm–Liouville operators as applied to approximate calculation of eigenvalues and eigenfunctions of certain singular operators
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 2209
EP  - 2232
VL  - 51
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a6/
LA  - ru
ID  - ZVMMF_2011_51_12_a6
ER  - 
%0 Journal Article
%A M. K. Kerimov
%T The theory of regularized traces of Sturm–Liouville operators as applied to approximate calculation of eigenvalues and eigenfunctions of certain singular operators
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 2209-2232
%V 51
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a6/
%G ru
%F ZVMMF_2011_51_12_a6
M. K. Kerimov. The theory of regularized traces of Sturm–Liouville operators as applied to approximate calculation of eigenvalues and eigenfunctions of certain singular operators. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 12, pp. 2209-2232. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a6/

[1] Dorodnitsyn A. A., “Asimptoticheskie zakony raspredeleniya sobstvennykh znachenii dlya nekotorykh osobykh vidov differentsialnykh operatorov”, Uspekhi matem. nauk, 7:6 (1952), 3–96

[2] Kerimov M. K., “O nekotorykh spetsialnykh funktsiyakh, voznikayuschikh pri reshenii asimptoticheskimi metodami obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 36:1 (1996), 80–102 | MR | Zbl

[3] Kerimov M. K., “Spetsialnye funktsii v nauchnom nasledii akademika A. A. Dorodnitsyna. Spetsialnye funktsii, voznikayuschie pri reshenii asimptoticheskimi metodami kraevykh zadach dlya osobykh obyknovennykh differentsialnykh uravnenii vtorogo poryadka”, Zh. vychisl. matem. i matem. fiz., 51:11 (2011), 1995–2032

[4] Sretenskii L. N., “Teoriya prilivov dolgogo perioda”, Izv. AN SSSR. Ser. Geografii i geofiz., 11:3 (1947), 197–270; Сретенский Л. Н., Динамическая теория приливов, Физматлит, М., 1987, 123–196

[5] Horn J., “Über eine lineare Differentialgleichung zweiter Ordnung mit einem willkurlichen Parameter”, Math. Annal., 52 (1899), 271–292 | DOI | MR | Zbl

[6] Abramowitz M., Stegun I. A.(eds.), Handbook of mathematical functions with formulas, gruphs and mathematical tables, Nat. Bur. Standards. Appl. Math. Ser., 55, U.S. Government Printing Office, Washington, D.C. ; M. Abramovits, I. Stigan, Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR | MR

[7] Strätt M. J. O., Lamesche–Mathieusche und verwandte Funktionen in Physik und Technik, Springer, Berlin, 1932; Strett M. D. O., Funktsii Lame, Mate i rodstvennye im funktsii v fizike i tekhnike, Gostekhizdat, USSR, Kharkov–Kiev, 1955

[8] Dikii L. A., “Novyi sposob priblizhennogo vychisleniya sobstvennykh chisel zadachi Shturma–Liuvillya”, Dokl. AN SSSR, 116:1 (1957), 12–14 | MR

[9] Dikii L. A., “Formuly sledov dlya differentsialnykh operatorov Shturma–Liuvillya”, Uspekhi matem. nauk, 13:3(81) (1958), 111–143 | MR

[10] McLachlan N. W., Theory and applications of mathieu functions, Oxford Univ. press, Oxford, 1947 ; Maklakhlan N. V., Teoriya i primenenie funktsii Mate, ed. Denisyuk I. N., Izd-vo inostr. lit., M., 1953 | MR | Zbl

[11] Sadovnichii V. A., “O nekotorykh tozhdestvakh dlya sobstvennykh chisel singulyarnykh obyknovennykh differentsialnykh operatorov. Sootnosheniya dlya nulei funktsii Besselya”, Vestn. MGU, 1971, no. 3, 77–86

[12] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[13] Sadovnichii V. A., “O sledakh obyknovennykh differentsialnykh operatorov vysshikh poryadkov”, Matem. sb., 72(114):2 (1967), 293–317 | Zbl

[14] Gasymov M. G., “O summe raznostei sobstvennykh znachenii dvukh samosopryazhennykh operatorov”, Dokl. AN SSSR, 150:6 (1963), 1202–1205 | MR | Zbl

[15] Gelfand I. M., Levitan P. M., “Ob odnom prostom tozhdestve dlya sobstvennykh znachenii differentsialnogo operatora vtorogo poryadka”, Dokl. AN SSSR, 88:4 (1953), 593–596 | MR

[16] Gasymov M. G., Levitan P. M., “O summe raznostei sobstvennykh znachenii dvukh singulyarnykh operatorov Shturma–Liuvillya”, Dokl. AN SSSR, 151:5 (1963), 1014–1017 | MR | Zbl

[17] Faddeev L. D., “O vyrazhenii dlya sleda raznosti dvukh singulyarnykh differentsialnykh operatorov tipa Shturma–Liuvillya”, Dokl. AN SSSR, 115:5 (1957), 878–881 | MR | Zbl