Approximation of the Jacobian matrix in $(m,2)$-methods for solving stiff problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 12, pp. 2194-2208

Voir la notice de l'article provenant de la source Math-Net.Ru

An initial value problem for stiff systems of first-order ordinary differential equations is considered. In the class of $(m,k)$-methods, two integration algorithms with a variable step size based on second $(m=k=2)$ and third $(k=2,m=3)$ order-accurate schemes are constructed in which both analytical and numerical Jacobian matrices can be frozen. A theorem on the maximum order of accuracy of $(m,2)$-methods with a certain approximation of the Jacobian matrix is proved. Numerical results are presented.
@article{ZVMMF_2011_51_12_a5,
     author = {E. A. Novikov},
     title = {Approximation of the {Jacobian} matrix in $(m,2)$-methods for solving stiff problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2194--2208},
     publisher = {mathdoc},
     volume = {51},
     number = {12},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a5/}
}
TY  - JOUR
AU  - E. A. Novikov
TI  - Approximation of the Jacobian matrix in $(m,2)$-methods for solving stiff problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 2194
EP  - 2208
VL  - 51
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a5/
LA  - ru
ID  - ZVMMF_2011_51_12_a5
ER  - 
%0 Journal Article
%A E. A. Novikov
%T Approximation of the Jacobian matrix in $(m,2)$-methods for solving stiff problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 2194-2208
%V 51
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a5/
%G ru
%F ZVMMF_2011_51_12_a5
E. A. Novikov. Approximation of the Jacobian matrix in $(m,2)$-methods for solving stiff problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 12, pp. 2194-2208. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a5/