Determination of the right-hand side of the Navier–Stokes system of equations and inverse problems for the thermal convection equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 12, pp. 2279-2287 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Inverse problem for an evolution equation with a quadratic nonlinearity in the Hilbert space is considered. The problem is, given the values of certain functionals of the solution, to find at each point in time the right-hand side that is a linear combination of those functionals. Sufficient conditions for the nonlocal (in time) existence of a solution (on the whole time interval) are established. An application to the inverse problems for the three-dimensional thermal convection equations of viscous incompressible fluid is considered. Unique nonlocal (in terms of time) solvability of the problem of determining the density of heat sources under the regularity condition of the initial data and sufficiently large dimension of the observation space is proved.
@article{ZVMMF_2011_51_12_a12,
     author = {A. Yu. Chebotarev},
     title = {Determination of the right-hand side of the {Navier{\textendash}Stokes} system of equations and inverse problems for the thermal convection equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2279--2287},
     year = {2011},
     volume = {51},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a12/}
}
TY  - JOUR
AU  - A. Yu. Chebotarev
TI  - Determination of the right-hand side of the Navier–Stokes system of equations and inverse problems for the thermal convection equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 2279
EP  - 2287
VL  - 51
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a12/
LA  - ru
ID  - ZVMMF_2011_51_12_a12
ER  - 
%0 Journal Article
%A A. Yu. Chebotarev
%T Determination of the right-hand side of the Navier–Stokes system of equations and inverse problems for the thermal convection equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 2279-2287
%V 51
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a12/
%G ru
%F ZVMMF_2011_51_12_a12
A. Yu. Chebotarev. Determination of the right-hand side of the Navier–Stokes system of equations and inverse problems for the thermal convection equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 12, pp. 2279-2287. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a12/

[1] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl

[2] Sermange M., Temam R., “Some mathematical questions related to the MHD equations”, Communs Pure and Appl. Math., 36 (1983), 635–664 | DOI | MR | Zbl

[3] Chebotarev A. Yu., “Konechnomernaya upravlyaemost dlya sistem tipa Nave–Stoksa”, Differents. ur-niya, 45:10 (2010), 1495–1503 | MR

[4] Vasin I. A., Prilepko A. I., “O razreshimosti prostranstvennoi obratnoi zadachi dlya nelineinykh uravnenii Nave–Stoksa”, Zh. vychisl. matem. i matem. fiz., 30:10 (1990), 1540–1552 | MR | Zbl

[5] Prilepko A. I., Vasin I. A., “Postanovka i issledovanie nelineinoi obratnoi zadachi upravleniya dvizheniem vyazkoi neszhimaemoi zhidkosti”, Differents. ur-niya, 28:4 (1992), 697–705 | MR | Zbl

[6] Chebotarev A. Yu., “Obratnye zadachi dlya nelineinykh evolyutsionnykh uravnenii tipa Nave–Stoksa”, Differents. ur-niya, 31:3 (1995), 517–524 | MR | Zbl

[7] Chebotarev A. Yu., “Subdifferential inverse problems for stationary systems of Navier–Stokes type”, J. Inverse and Ill Posed Problems, 3:4 (1995), 268–279 | DOI | MR

[8] Chebotarev A. Yu., “Subdifferential inverse problems for evolution Navier–Stokes systems”, J. Inverse and Ill Posed Problems, 8:3 (2000), 275–287 | MR

[9] Choulli M., Imanuilov O. Yu., Yamamoto M., Inverse soruce problem for the Navier–Stokes equations, Preprint 2006-3, UTMS

[10] Fan J., Nakavura G., “Well-posedness of an inverse problem of Navier–Stokes equations with the final overdetermination”, J. Inverse and Ill-posed Problems, 17:6 (2009), 565–584 | DOI | MR | Zbl

[11] Fan J., Di Cristo M., Jiang Yu., Nakamura G., “Inverse viscosity problem for the Navier–Stokes equation”, J. Math. Anal. Appl., 365 (2010), 750–757 | DOI | MR | Zbl