Mathieu functions and coulomb spheroidal functions in the electrostatic probe theory
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 12, pp. 2269-2278 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A spherical probe placed in a slowly moving collisional plasma with a large Debye length $\lambda_{\mathrm D}\to\infty$ is considered. The partial differential equation describing the electron concentration around the probe is reduced to two ordinary differential equations, namely, to the equation for Coulomb spheroidal functions and Mathieu’s modified equation with the parameter $a$ of the latter related to the eigenvalue $\lambda$ of the former by the relation $a=\lambda+1/4$. It is shown that the solutions of Mathieu’s equation are Mathieu functions of half-integer order, which are expressed as series in terms of spherical Bessel functions and series of products of Bessel functions. These Mathieu functions are numerically constructed for Mathieu’s modified and usual equations.
@article{ZVMMF_2011_51_12_a11,
     author = {A. V. Kashevarov},
     title = {Mathieu functions and coulomb spheroidal functions in the electrostatic probe theory},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2269--2278},
     year = {2011},
     volume = {51},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a11/}
}
TY  - JOUR
AU  - A. V. Kashevarov
TI  - Mathieu functions and coulomb spheroidal functions in the electrostatic probe theory
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 2269
EP  - 2278
VL  - 51
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a11/
LA  - ru
ID  - ZVMMF_2011_51_12_a11
ER  - 
%0 Journal Article
%A A. V. Kashevarov
%T Mathieu functions and coulomb spheroidal functions in the electrostatic probe theory
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 2269-2278
%V 51
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a11/
%G ru
%F ZVMMF_2011_51_12_a11
A. V. Kashevarov. Mathieu functions and coulomb spheroidal functions in the electrostatic probe theory. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 12, pp. 2269-2278. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a11/

[1] Chan P., Telbot L., Turyan K., Elektricheskie zondy v nepodvizhnoi i dvizhuscheisya plazme, Mir, M., 1978

[2] Kashevarov A. V., “Vtoroe uravnenie Penleve v teorii elektricheskogo zonda. Nekotorye chislennye resheniya”, Zh. vychisl. matem. i matem. fiz., 38:6 (1998), 992–1000 | MR | Zbl

[3] Kashevarov A. V., “Vtoroe uravnenie Penleve v teorii elektricheskogo zonda. Chislennye resheniya v sluchae nepolnogo pogloscheniya zaryazhennykh chastits poverkhnostyu”, Zh. tekhn. fiz., 74:1 (2004), 3–9

[4] Kashevarov A. V., “K teorii elektricheskogo zonda v sluchae emissii chastits s poverkhnosti”, Uch. zap. TsAGI, 41:6 (2010), 37–42

[5] Egorova Z. M., Kashevarov A. V., Fomina E. M., Tskhai N. S., “Ob izmerenii kontsentratsii zaryazhennykh chastits tsilindricheskim zondom Lengmyura v plazme plameni”, Teplofiz. vysokikh t-r, 26:3 (1988), 577–581

[6] Mak-Lakhlan N. V., Teoriya i prilozheniya funktsii Mate, Izd-vo inostr. lit., M., 1953

[7] Beitmen L., Erdeii A., Vysshie transtsendentnye funktsii. Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Spravochnaya matem. biblioteka, Nauka, M., 1967 | MR

[8] Abramovits M., Stigan I.(red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR

[9] Kashevarov A. V., “Tochnoe reshenie zadachi konvektivnogo teploobmena dlya krugovogo tsilindra v zhidkosti s malym chislom Prandtlya”, Izv. RAN. Mekhan. zhidkosti i gaza, 1994, no. 1, 43–48 | Zbl

[10] Kashevarov A. V., “Tochnoe reshenie zadachi konvektivnogo teploobmena dlya ellipticheskogo tsilindra i plastiny v zhidkosti s malym chislom Prandtlya”, Izv. RAN. Mekhan. zhidkosti i gaza, 1996, no. 3, 26–31 | Zbl

[11] Kashevarov A. V., “O reshenii zadachi konvektivnogo teploobmena pri ploskom obtekanii zhidkostyu tela s malym chislom Prandtlya”, Izv. RAN. Mekhan. zhidkosti i gaza, 1997, no. 6, 180–183 | Zbl

[12] Komarov I. V., Ponomarev L. I., Slavyanov S. Yu., Sferoidalnye i kulonovskie sferoidalnye funktsii, Nauka, M., 1976 | MR | Zbl

[13] Tablitsy dlya vychisleniya funktsii Mate, Bibl. matem. tablits, 42, VTs AN SSSR, M., 1967

[14] Bailey D. H., “Algorithm 719: Multiprecision translation and execution of fortran programs”, ACM Transact. Math. Software, 19:3 (1993), 288–319 | DOI | Zbl