Solvability of the third and fourth basic three-dimensional dynamic problems in hemitropic elasticity
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 12, pp. 2260-2268 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The third and fourth basic dynamic problems for a three-dimensional homogeneous isotropic centrally symmetric hemitropic micropolar medium are studied. Under fairly general assumptions, the classical solvability of the problems is proved using the Fourier method.
@article{ZVMMF_2011_51_12_a10,
     author = {Yu. A. Bezhuashvili and R. V. Rukhadze},
     title = {Solvability of the third and fourth basic three-dimensional dynamic problems in hemitropic elasticity},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2260--2268},
     year = {2011},
     volume = {51},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a10/}
}
TY  - JOUR
AU  - Yu. A. Bezhuashvili
AU  - R. V. Rukhadze
TI  - Solvability of the third and fourth basic three-dimensional dynamic problems in hemitropic elasticity
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 2260
EP  - 2268
VL  - 51
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a10/
LA  - ru
ID  - ZVMMF_2011_51_12_a10
ER  - 
%0 Journal Article
%A Yu. A. Bezhuashvili
%A R. V. Rukhadze
%T Solvability of the third and fourth basic three-dimensional dynamic problems in hemitropic elasticity
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 2260-2268
%V 51
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a10/
%G ru
%F ZVMMF_2011_51_12_a10
Yu. A. Bezhuashvili; R. V. Rukhadze. Solvability of the third and fourth basic three-dimensional dynamic problems in hemitropic elasticity. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 12, pp. 2260-2268. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a10/

[1] Kupradze V. D., Gegeliya T. G., Basheleishvili M. O., Burchuladze T. V., Trekhmernye zadachi matematicheskoi teorii uprugosti i termouprugosti, Nauka, M., 1976 | MR

[2] Kuvshinskii E. V., Aero E. L., “Kontinualnaya teoriya asimmetricheskoi uprugosti. Uchet “vnutrennogo” vrascheniya”, Fiz. tverdogo tela, 3:5 (1963), 2592–2598

[3] Nowacki J. P., Nowacki W., “Some problems of hemitropic micropolar continuum”, Bull. Acad. Polon. Sci., Ser. Sci. Techn., 25:151(297) (1977), 1–14 | MR

[4] Burchuladze T. V., Rukhadze R. V., “Teorema edinstvennosti v dinamicheskikh zadachakh gemitropnoi teorii uprugosti”, Periodich. nauchn. zh. “Intelekti”, 2000, no. 1(7), 13–15 | MR

[5] Giorgashvili L. G., “Reshenie osnovnykh granichnykh zadach statiki dlya gemitropnoi mikropolyarnoi sredy”, Tr. In-ta prikl. matem. im. I. N. Vekua, 16, Tbilisi, 1985, 56–79 | MR

[6] Kapanadze R. V., Chichinadze R. K., Nekotorye granichnye zadachi dinamiki momentnoi teorii uprugosti, Izd-vo TGU, Tbilisi, 1976 | MR