Sensitivity function: Properties and applications
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 12, pp. 2126-2142 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The sensitivity function induced by a convex programming problem is examined. Its monotonicity, subdifferentiability, and closure properties are analyzed. A relation to the Pareto optimal solution set of the multicriteria convex optimization problem is established. The role of the sensitivity function in systems describing optimization problems is clarified. It is shown that the solution of these systems can often be reduced to the minimization of the sensitivity function on a convex set. Numerical methods for solving such problems are proposed, and their convergence is proved.
@article{ZVMMF_2011_51_12_a1,
     author = {A. S. Antipin and A. I. Golikov and E. V. Khoroshilova},
     title = {Sensitivity function: {Properties} and applications},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2126--2142},
     year = {2011},
     volume = {51},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a1/}
}
TY  - JOUR
AU  - A. S. Antipin
AU  - A. I. Golikov
AU  - E. V. Khoroshilova
TI  - Sensitivity function: Properties and applications
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 2126
EP  - 2142
VL  - 51
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a1/
LA  - ru
ID  - ZVMMF_2011_51_12_a1
ER  - 
%0 Journal Article
%A A. S. Antipin
%A A. I. Golikov
%A E. V. Khoroshilova
%T Sensitivity function: Properties and applications
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 2126-2142
%V 51
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a1/
%G ru
%F ZVMMF_2011_51_12_a1
A. S. Antipin; A. I. Golikov; E. V. Khoroshilova. Sensitivity function: Properties and applications. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 12, pp. 2126-2142. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_12_a1/

[1] Gale D., The theory of linear economic models, McGraw-Hill Book Co., Inc., New York, 1960 | MR

[2] Williams A. C., “Marginal values in linear programming”, J. Soc. Industr. Appl. Math., 1963, no. 11, 82–94 | MR | Zbl

[3] Zlobec S., Stabe parametric programming, Kluwer Acad. Publs, Dordrecht. etc., 2001 | MR | Zbl

[4] Eremin I. I., Astafev N. N., Vvedenie v teoriyu lineinogo i vypuklogo programmirovaniya, Nauka, M., 1976 | MR

[5] Elster K.-Kh., Reingardt R., Shoible M., Donat G., Vvedenie v nelineinoe programmirovanie, Nauka, M., 1985 | MR | Zbl

[6] Rzhevskii S. V., Monotonnye metody vypuklogo programmirovaniya, Nauk. Dumka, Kiev, 1993 | MR

[7] Golikov A. I., “Kharakteristika mnozhestva optimalnykh otsenok zadachi mnogokriterialnoi optimizatsii”, Zh. vychisl. matem. i matem. fiz., 28:10 (1988), 1461–1474 | MR | Zbl

[8] Zhadan V. G., “Metod modifitsirovannoi funktsii Lagranzha dlya zadach mnogokriterialnoi optimizatsii”, Zh. vychisl. matem. i matem. fiz., 28:11 (1988), 1603–1617 | MR

[9] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982 | MR | Zbl

[10] Rockafellar R. T., Wets R.J.-B., Variational analysis, Springer, Berlin etc., 1998 | MR | Zbl

[11] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[12] Antipin A. S., “Sedlovaya zadacha i zadacha optimizatsii kak edinaya sistema”, Tr. In-ta matem. i mekhan., M., 14:2 (2008), 5–15 | MR | Zbl

[13] Antipin A. S., “Metody resheniya sistem zadach vypuklogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 27:3 (1987), 368–376 | MR

[14] Antipin A. S., “O modelyakh vzaimodeistviya predpriyatii-proizvoditelei, predpriyatii-potrebitelei i transportnoi sistemy”, Avtomatika i telemekhan., 1989, no. 10, 105–113 | Zbl

[15] Karlin S., Matematicheskie metody v teorii igr, programmirovanii i ekonomike, Mir, M., 1964 | Zbl

[16] Antipin A. S., Obratnye zadachi optimizatsii, Bolshaya Ros. entsiklopediya, INFRA-M, 2003, 346–347

[17] Antipin A. S., “Ekstraproksimalnyi metod resheniya ravnovesnykh i igrovykh zadach”, Zh. vychisl. matem. i matem. fiz., 45:11 (2005), 1974–1995 ; 12, 2102–2111 | MR | MR | Zbl

[18] Antipin A. S., Artemeva L. A., Vasilev F. P., “Mnogokriterialnoe ravnovesnoe programmirovanie: ekstragradientnyi metod”, Zh. vychisl. matem. i matem. fiz., 50:2 (2010), 234–241 | MR | Zbl

[19] Antipin A. S., Artemeva L. A., Vasilev F. P., “Regulyarizovannyi ekstragradientnyi metod resheniya parametricheskoi mnogokriterialnoi zadachi ravnovesnogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 50:12 (2010), 1–16 | MR

[20] Antipin A. S., “O skhodimosti i otsenkakh skorosti skhodimosti proksimalnykh metodov k nepodvizhnym tochkam ekstremalnykh otobrazhenii”, Zh. vychisl. matem. i matem. fiz., 35:5 (1995), 688–704 | MR | Zbl