Numerical study of the radiometric phenomenon exhibited by a rotating Crookes radiometer
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 11, pp. 2042-2052 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The two-dimensional rarefied gas flow around a rotating Crookes radiometer and the arising radiometric forces are studied by numerically solving the Boltzmann kinetic equation. The computations are performed in a noninertial frame of reference rotating together with the radiometer. The collision integral is directly evaluated using a projection method, while second- and third-order accurate TVD schemes are used to solve the advection equation and the equation for inertia-induced transport in the velocity space, respectively. The radiometric forces are found as functions of the rotation frequency.
@article{ZVMMF_2011_51_11_a7,
     author = {Yu. A. Anikin},
     title = {Numerical study of the radiometric phenomenon exhibited by a~rotating {Crookes} radiometer},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2042--2052},
     year = {2011},
     volume = {51},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_11_a7/}
}
TY  - JOUR
AU  - Yu. A. Anikin
TI  - Numerical study of the radiometric phenomenon exhibited by a rotating Crookes radiometer
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 2042
EP  - 2052
VL  - 51
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_11_a7/
LA  - ru
ID  - ZVMMF_2011_51_11_a7
ER  - 
%0 Journal Article
%A Yu. A. Anikin
%T Numerical study of the radiometric phenomenon exhibited by a rotating Crookes radiometer
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 2042-2052
%V 51
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_11_a7/
%G ru
%F ZVMMF_2011_51_11_a7
Yu. A. Anikin. Numerical study of the radiometric phenomenon exhibited by a rotating Crookes radiometer. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 11, pp. 2042-2052. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_11_a7/

[1] Anikin Yu. A., “Chislennoe issledovanie radiometricheskikh sil posredstvom pryamogo resheniya kineticheskogo uravneniya Boltsmana”, Zh. vychisl. matem. i matem. fiz., 51:7 (2011), 1339–1355

[2] Cheremisin F. G., “A conservative method for calculation of the Boltzmann collision integral”, Doklady Physics, 42:11 (1997), 607–610 | MR

[3] Tcheremissine F., “Direct numerical solution of the boltzmann equation”, Rarefied gas dynamics, 24-th Internat. Symp. Rarefied gas dynamics. AIP Conf. Proc. 762, Melville, N.-Y., 2005, 667–685

[4] Ollivier-Gooch C. F., “Quasi-ENO schemes for unstructured meshes based on unlimited data-dependent least-squares reconstruction”, J. Comput. Phys., 133:1 (1997), 6–17 | DOI | MR | Zbl

[5] Hubbard M. E., “Multidimensional slope limiters for MUSCL-type finite volume schemes on unstructured grids”, J. Comput. Phys., 155 (1999), 54–74 | DOI | MR | Zbl

[6] Titarev V. A., “Numerical method for computing two-dimensional unsteady rarefied gas flows in arbitrarily shaped domains”, Comput. Math. and Math. Phys., 49:7 (2009), 1197–1211 | DOI | MR | Zbl

[7] Philip L. Roe, “Some contributions to the modeling of discontinuous flows”, Lect. Appl. Math., 22 (1985) | MR

[8] Sweby P. K., “High resolution schemes using flux-limiters for hyperbolic conservation laws”, SIAM J. Numer. Analys, 21 (1984), 995–1011 | DOI | MR | Zbl

[9] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. VI, Gidrodinamika, Nauka, M., 1986 | MR