Covariant transformations of basis differential-difference schemes in a plane
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 11, pp. 2033-2041 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Consistent difference approximations to differential operators in vector and tensor analysis are constructed in curvilinear coordinates in a plane by applying the basis operator method. They are obtained as a transformation of basis approximations in a Cartesian coordinate system. For the continuum mechanics equations in Lagrangian variables, this approach yields theoretically justified differential-difference schemes whose conservation laws correspond to the continuous case.
@article{ZVMMF_2011_51_11_a6,
     author = {V. A. Korobitsyn},
     title = {Covariant transformations of basis differential-difference schemes in a~plane},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2033--2041},
     year = {2011},
     volume = {51},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_11_a6/}
}
TY  - JOUR
AU  - V. A. Korobitsyn
TI  - Covariant transformations of basis differential-difference schemes in a plane
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 2033
EP  - 2041
VL  - 51
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_11_a6/
LA  - ru
ID  - ZVMMF_2011_51_11_a6
ER  - 
%0 Journal Article
%A V. A. Korobitsyn
%T Covariant transformations of basis differential-difference schemes in a plane
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 2033-2041
%V 51
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_11_a6/
%G ru
%F ZVMMF_2011_51_11_a6
V. A. Korobitsyn. Covariant transformations of basis differential-difference schemes in a plane. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 11, pp. 2033-2041. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_11_a6/

[1] Kovenya V. M., Yanenko N. N., Metod rasschepleniya v zadachakh gazovoi dinamiki, Nauka, Novosibirsk, 1980 | MR

[2] Shokin Yu. I., Metod differentsialnogo priblizheniya, Nauka, Novosibirsk, 1979 | MR

[3] Korobitsyn V. A., “Metod bazisnykh operatorov postroeniya raznostnykh skhem v neortogonalnykh sistemakh koordinat na ploskosti”, Matem. modelirovanie, 3:10 (1991), 31–41 | MR | Zbl

[4] Samarskii A. A., Koldoba A. V., Poveschenko Yu. A. i dr., Raznostnye skhemy na neregulyarnykh setkakh, Izd-vo BGU, Minsk, 1996

[5] Shashkov M., Conservative finite-difference methods on general grids, CRC Press, New York, 1996 | MR | Zbl

[6] Korobitsyn V. A., “Zakony sokhraneniya v diskretnykh modelyakh sploshnoi sredy”, Chisl. metody mekhan. sploshnoi sredy, 17:4 (1986), 77–101 | Zbl

[7] Korobitsyn V. A., “Invariantnye variatsionno-raznostnye skhemy i zakony sokhraneniya”, Zh. vychisl. matem. i matem. fiz., 29:7 (1989), 1067–1078 | MR

[8] Korobitsyn V. A., “Zakony sokhraneniya invariantnykh differentsialno-raznostnykh skhem”, Matem. modelirovanie, 1:8 (1989), 110–115 | MR | Zbl

[9] Margolin L., Shashkov M., “Using a curvilinear grid to construct symmetry-preserving discretizations for Lagrangian gas dynamics”, J. Computational Physics, 149 (1999), 389–417 | DOI | MR | Zbl

[10] Tishkin V. F., Tyurina N. N., Favorskii A. P., Raznostnye skhemy dlya rascheta gidrodinamicheskikh techenii v tsilindricheskikh koordinatakh, Preprint No 23, IPM AN SSSR, M., 1987, 38 pp.

[11] Mak-Konnel A. Dzh., Vvedenie v tenzornyi analiz, GIFML, M., 1963

[12] Kuropatenko V. F., “O tochnosti vychisleniya entropii v raznostnykh skhemakh dlya uravnenii gazovoi dinamiki”, Chisl. metody mekhan. sploshnoi sredy, 9:7 (1978), 49–59 | MR

[13] Samarskii A. A., Popov Yu. P., Raznostnye metody resheniya zadach gazovoi dinamiki, Nauka, M., 1980 | MR