@article{ZVMMF_2011_51_11_a3,
author = {A. S. Antipin and N. Mijailovic and M. Jacimovic},
title = {A~second-order continuous method for solving quasi-variational inequalities},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1973--1980},
year = {2011},
volume = {51},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_11_a3/}
}
TY - JOUR AU - A. S. Antipin AU - N. Mijailovic AU - M. Jacimovic TI - A second-order continuous method for solving quasi-variational inequalities JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2011 SP - 1973 EP - 1980 VL - 51 IS - 11 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_11_a3/ LA - ru ID - ZVMMF_2011_51_11_a3 ER -
%0 Journal Article %A A. S. Antipin %A N. Mijailovic %A M. Jacimovic %T A second-order continuous method for solving quasi-variational inequalities %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2011 %P 1973-1980 %V 51 %N 11 %U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_11_a3/ %G ru %F ZVMMF_2011_51_11_a3
A. S. Antipin; N. Mijailovic; M. Jacimovic. A second-order continuous method for solving quasi-variational inequalities. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 11, pp. 1973-1980. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_11_a3/
[1] Antipin A. S., Nedich A., “Nepreryvnyi metod linearizatsii vtorogo poryadka dlya zadach vypuklogo programmirovaniya”, Vestn. MGU. Vychisl. matem. i kibernetika, 1996, no. 2, 3–12 | MR | Zbl
[2] Nedič A., High-order ontinuous and iterative methods of minimization, PHD dis., Moscow State Univ., M., 1994
[3] Vasilev F. P., Nedich A., “Nepreryvnyi regulyarizovannyi metod proektsii gradienta vtorogo poryadka”, Vestn. MGU. Vychisl. matem. i kibernetika, 1994, no. 2, 3–11 | MR
[4] Nesterov Yu., Scrimali L., Solving strongly monotone variational and quasi-variational inequalities, Core discussion paper, 2006/107
[5] Ryazantseva I. P., “Metody vtorogo poryadka dlya nekotorykh kvazivariatsionnykh neravenstv”, Differents. ur-niya, 44:7 (2008), 1006–1017 | MR | Zbl
[6] Ryazantseva I. P., “Metody pervogo poryadka dlya kvazivariatsionnykh neravenstv v gilbertovom prostranstve”, Zh. vychisl. matem. i matem. fiz., 47:7 (2007), 976–987 | MR | Zbl
[7] Fukushima M., “A class of gap functions for quasi-variational inequality problems”, J. Industr. and Management Optimizat., 3:2 (2007), 165–171 | DOI | MR | Zbl
[8] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002
[9] Jačimovic M., “On a continuous method with changeable metric for solving variational inequalities”, Proc. Sect. Natur. Sci. Montenegrin Acad. Sci. and Arts., 15 (2003), 8–19