A second-order continuous method for solving quasi-variational inequalities
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 11, pp. 1973-1980 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A continuous method of the gradient type for solving quasi-variational inequalities is examined, and sufficient conditions for this method to converge are found.
@article{ZVMMF_2011_51_11_a3,
     author = {A. S. Antipin and N. Mijailovic and M. Jacimovic},
     title = {A~second-order continuous method for solving quasi-variational inequalities},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1973--1980},
     year = {2011},
     volume = {51},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_11_a3/}
}
TY  - JOUR
AU  - A. S. Antipin
AU  - N. Mijailovic
AU  - M. Jacimovic
TI  - A second-order continuous method for solving quasi-variational inequalities
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1973
EP  - 1980
VL  - 51
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_11_a3/
LA  - ru
ID  - ZVMMF_2011_51_11_a3
ER  - 
%0 Journal Article
%A A. S. Antipin
%A N. Mijailovic
%A M. Jacimovic
%T A second-order continuous method for solving quasi-variational inequalities
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1973-1980
%V 51
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_11_a3/
%G ru
%F ZVMMF_2011_51_11_a3
A. S. Antipin; N. Mijailovic; M. Jacimovic. A second-order continuous method for solving quasi-variational inequalities. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 11, pp. 1973-1980. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_11_a3/

[1] Antipin A. S., Nedich A., “Nepreryvnyi metod linearizatsii vtorogo poryadka dlya zadach vypuklogo programmirovaniya”, Vestn. MGU. Vychisl. matem. i kibernetika, 1996, no. 2, 3–12 | MR | Zbl

[2] Nedič A., High-order ontinuous and iterative methods of minimization, PHD dis., Moscow State Univ., M., 1994

[3] Vasilev F. P., Nedich A., “Nepreryvnyi regulyarizovannyi metod proektsii gradienta vtorogo poryadka”, Vestn. MGU. Vychisl. matem. i kibernetika, 1994, no. 2, 3–11 | MR

[4] Nesterov Yu., Scrimali L., Solving strongly monotone variational and quasi-variational inequalities, Core discussion paper, 2006/107

[5] Ryazantseva I. P., “Metody vtorogo poryadka dlya nekotorykh kvazivariatsionnykh neravenstv”, Differents. ur-niya, 44:7 (2008), 1006–1017 | MR | Zbl

[6] Ryazantseva I. P., “Metody pervogo poryadka dlya kvazivariatsionnykh neravenstv v gilbertovom prostranstve”, Zh. vychisl. matem. i matem. fiz., 47:7 (2007), 976–987 | MR | Zbl

[7] Fukushima M., “A class of gap functions for quasi-variational inequality problems”, J. Industr. and Management Optimizat., 3:2 (2007), 165–171 | DOI | MR | Zbl

[8] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[9] Jačimovic M., “On a continuous method with changeable metric for solving variational inequalities”, Proc. Sect. Natur. Sci. Montenegrin Acad. Sci. and Arts., 15 (2003), 8–19