Focal approximation on the complex plane
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 11, pp. 1963-1972 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of analytic approximation of a smooth closed curve specified by a set of its points on the complex plane is proposed. An algorithmic method for constructing an approximating lemniscate is proposed and investigated. This method is based on a mapping of the curve to be approximated onto the phase circle; the convergence of the method is proved. The location of the lemniscate foci inside the curve provides the degrees of freedom for the focal approximation.
@article{ZVMMF_2011_51_11_a2,
     author = {T. A. Rakcheeva},
     title = {Focal approximation on the complex plane},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1963--1972},
     year = {2011},
     volume = {51},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_11_a2/}
}
TY  - JOUR
AU  - T. A. Rakcheeva
TI  - Focal approximation on the complex plane
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1963
EP  - 1972
VL  - 51
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_11_a2/
LA  - ru
ID  - ZVMMF_2011_51_11_a2
ER  - 
%0 Journal Article
%A T. A. Rakcheeva
%T Focal approximation on the complex plane
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1963-1972
%V 51
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_11_a2/
%G ru
%F ZVMMF_2011_51_11_a2
T. A. Rakcheeva. Focal approximation on the complex plane. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 11, pp. 1963-1972. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_11_a2/

[1] Hilbert D., Gesammelte Abhandlungen, v. 3, Springer, Berlin, 1935

[2] Markushevich A. I., Teoriya analiticheskikh funktsii, v. 1, Nauka, M., 1967

[3] Rakcheeva T. A., “Mnogofokusnye lemniskaty: priblizhenie krivykh”, Zh. vychisl. matem. i matem. fiz., 50:11 (2010), 2060–2072 | MR | Zbl

[4] Rakcheeva T. A., “Priblizhenie krivykh mnogofokusnymi lemniskatami”, Cheloveko-mashinnye sistemy i analiz dannykh, Nauka, M., 1992 | Zbl

[5] Rakcheeva T. A., “Algoritm fokusnogo priblizheniya krivykh”, Cheloveko-mashinnye sistemy i analiz dannykh, Nauka, M., 1992 | Zbl

[6] Rakcheeva T. A., Fokusnaya approksimatsiya ploskikh krivykh, Zaklyuchitelnyi otchet, Gos. reg. No 10.9.10011069, 1992, 115 pp. | Zbl

[7] Rakcheeva T. A., “Priblizhenie krivykh: fokusy ili garmoniki”, Matematika, kompyuter, obrazovanie, v. 2, NITs “Regulyarnaya i khaotich. dinamika”, M.–Izhevsk, 2007

[8] Shabat B. V., Vvedenie v kompleksnyi analiz, ch. 1, Nauka, M., 1976 | MR

[9] Rakcheeva T. A., “Kvazilemniskaty v zadache priblizheniya”, Treti Kurdyumovskie chteniya. Sinergetika v estestvennykh naukakh, Materialy mezhdunar. mezhdistsiplinarnoi nauchn. konf., Tver, 2007

[10] Rakcheeva T. A., “Polipolyarnaya lemniskaticheskaya sistema koordinat”, Kompyuternye issl. i modelirovanie, 1:3 (2009), 251–261

[11] Rakcheeva T. A., “Upravlenie mnogofokusnymi stepenyami svobody v zadache formoobrazovaniya”, Parallelnye vychisleniya i zadachi upravleniya, Tr. Mezhdunar. nauchn. konf., IPU RAN, M., 2001