Nonlinear nonequilibrium kinetic model of the Boltzmann equation for monatomic gases
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 11, pp. 2084-2095

Voir la notice de l'article provenant de la source Math-Net.Ru

A model kinetic equation approximating the Boltzmann equation in a wide range of nonequilibrium gas states was constructed to describe rarefied gas flows. The kinetic model was based on a distribution function depending on the absolute velocity of the gas particles. Highly efficient in numerical computations, the model kinetic equation was used to compute a shock wave structure. The numerical results were compared with experimental data for argon.
@article{ZVMMF_2011_51_11_a11,
     author = {I. N. Larina and V. A. Rykov},
     title = {Nonlinear nonequilibrium kinetic model of the {Boltzmann} equation for monatomic gases},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2084--2095},
     publisher = {mathdoc},
     volume = {51},
     number = {11},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_11_a11/}
}
TY  - JOUR
AU  - I. N. Larina
AU  - V. A. Rykov
TI  - Nonlinear nonequilibrium kinetic model of the Boltzmann equation for monatomic gases
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 2084
EP  - 2095
VL  - 51
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_11_a11/
LA  - ru
ID  - ZVMMF_2011_51_11_a11
ER  - 
%0 Journal Article
%A I. N. Larina
%A V. A. Rykov
%T Nonlinear nonequilibrium kinetic model of the Boltzmann equation for monatomic gases
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 2084-2095
%V 51
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_11_a11/
%G ru
%F ZVMMF_2011_51_11_a11
I. N. Larina; V. A. Rykov. Nonlinear nonequilibrium kinetic model of the Boltzmann equation for monatomic gases. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 11, pp. 2084-2095. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_11_a11/