Solution of the heat equation on unstructured curvilinear grids
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 11, pp. 2075-2083 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A computational approach to the solution of the heat equation is proposed. In the case of three-dimensional oblique (nonorthogonal) unstructured grids, this approach results in a compact grid stencil and unconditionally stable computational algorithm. A feature of the proposed approach is the use of flux functions as dependent separate variables. Mainly hexagonal grids are considered in which every cell can be continuously mapped onto a unit cube. Computational examples are presented.
@article{ZVMMF_2011_51_11_a10,
     author = {V. M. Goloviznin and V. N. Koterov and V. M. Krivtsov},
     title = {Solution of the heat equation on unstructured curvilinear grids},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2075--2083},
     year = {2011},
     volume = {51},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_11_a10/}
}
TY  - JOUR
AU  - V. M. Goloviznin
AU  - V. N. Koterov
AU  - V. M. Krivtsov
TI  - Solution of the heat equation on unstructured curvilinear grids
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 2075
EP  - 2083
VL  - 51
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_11_a10/
LA  - ru
ID  - ZVMMF_2011_51_11_a10
ER  - 
%0 Journal Article
%A V. M. Goloviznin
%A V. N. Koterov
%A V. M. Krivtsov
%T Solution of the heat equation on unstructured curvilinear grids
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 2075-2083
%V 51
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_11_a10/
%G ru
%F ZVMMF_2011_51_11_a10
V. M. Goloviznin; V. N. Koterov; V. M. Krivtsov. Solution of the heat equation on unstructured curvilinear grids. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 11, pp. 2075-2083. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_11_a10/

[1] Streng G., Fiks Dzh., Teoriya metoda konechnykh elementov, Mir, M., 1980

[2] Hirsch C., Numerical computation of internal and external flows, v. 1, Fundamentals of numerical discretization, John Willey and Sons, New-York, 2001

[3] Samarskii A. A., Koldoba A. V., Poveschenko Yu. A. i dr., Raznostnye skhemy na neregulyarnykh setkakh, Minsk, 1996

[4] Goloviznin V. M., Korshunov V. K., Samarskii A. A., Chudanov V. V., Metod faktorizovannykh teplovykh smeschenii dlya resheniya dvumernykh zadach teploprovodnosti na neregulyarnykh raschetnykh setkakh, Preprint No 58, IPMatem AN SSSR, M., 1985, 25 pp. | MR

[5] Goloviznin V. M., Samarskaya E. A., Chudanov V. V., Obosnovanie metoda “faktorizovannykh teplovykh smeschenii” dlya rascheta zadach teploprovodnosti na neortogonalnykh setkakh, Preprint No 77, IPMatem AN SSSR, M., 1987, 20 pp. | MR

[6] Bio M., Variatsionnye printsipy v teorii teploobmena, Energiya, M., 1975 | Zbl

[7] Korshiya T. K., Tishkin V. F., Favorskii A. P., Shashkov M. Yu., “Variatsionnyi podkhod k postroeniyu raznostnykh skhem dlya uravneniya teploprovodnosti na krivolineinykh setkakh”, Zh. vychisl. matem. i matem. fiz., 20:2 (1980), 401–421 | MR | Zbl

[8] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989 | MR