Adaptation of the Galerkin method to interior diffraction problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 10, pp. 1857-1866 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An approach based on a modified Galerkin method is proposed for solving interior diffraction problems. The solution procedure is demonstrated by computing the junction of two planar waveguides through a waveguide segment filled with an arbitrary dielectric material.
@article{ZVMMF_2011_51_10_a9,
     author = {A. N. Agalakov and S. B. Raevskii and A. A. Titarenko},
     title = {Adaptation of the {Galerkin} method to interior diffraction problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1857--1866},
     year = {2011},
     volume = {51},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_10_a9/}
}
TY  - JOUR
AU  - A. N. Agalakov
AU  - S. B. Raevskii
AU  - A. A. Titarenko
TI  - Adaptation of the Galerkin method to interior diffraction problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1857
EP  - 1866
VL  - 51
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_10_a9/
LA  - ru
ID  - ZVMMF_2011_51_10_a9
ER  - 
%0 Journal Article
%A A. N. Agalakov
%A S. B. Raevskii
%A A. A. Titarenko
%T Adaptation of the Galerkin method to interior diffraction problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1857-1866
%V 51
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_10_a9/
%G ru
%F ZVMMF_2011_51_10_a9
A. N. Agalakov; S. B. Raevskii; A. A. Titarenko. Adaptation of the Galerkin method to interior diffraction problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 10, pp. 1857-1866. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_10_a9/

[1] Veselov G. I., Raevskii S. B., Sloistye metalo-dielektricheskie volnovody, Radio i svyaz, M., 1988

[2] Budaragin R. V., Radionov A. A., “Metody rascheta volnovodov s plavno neregulyarnoi ekraniruyuschei poverkhnostyu”, Antenny, 85:6 (2004), 25–30

[3] Budaragin R. V., Radionov A. A., Titarenko A. A., “Raschet plavnykh perekhodov v kruglom ekranirovannom volnovode”, Fizika volnovykh protsessov i radiotekhn. sistemy, 3:2 (2000), 27–30

[4] Katsenelenbaum B. Z., Teoriya neregulyarnykh volnovodov s medlenno menyayuschimisya parametrami, Izd-vo AN SSSR, M., 1961 | MR

[5] Shevchenko V. V., Plavnye perekhody v otkrytykh volnovodakh, Nauka, M., 1963

[6] Pavelev V. G., Tsimring Sh. E., “K teorii neodnorodnykh elektromagnitnykh volnovodov, soderzhaschikh kriticheskie usloviya”, Radiotekhn. i elektronika, 27:6 (1982), 982–986

[7] Budaragin R. V., Radionov A. A., “Raschet volnovodov s periodicheski menyayuscheisya ekranirovannoi poverkhnostyu na osnove modifitsirovannogo metoda poperechnykh sechenii”, Antenny, 2009, no. 8, 66–71

[8] Nikolskii V. V., Nikolskaya T. I., Dekompozitsionnyi podkhod k zadacham elektrodinamiki, Nauka, M., 1983

[9] Silvester P. P., Ferrari R. L., Finite elements for electrical engineers, Cambridge Univ. Press, 1985

[10] Raevskii S. B., Titarenko A. A., “Metod elektrodinamicheskogo rascheta pryamougolnykh zakrytykh volnovodov s proizvolnym dielektricheskim zapolneniem”, Antenny, 117:2 (2007), 4–11

[11] Raevskii S. B., Titarenko A. A., “Reshenie vneshnei kraevoi zadachi o rasprostranenii elektromagnitnykh voln v napravlyayuschei dielektricheskoi strukture proizvolnogo poperechnogo secheniya”, Zh. vychisl. matem. i matem. fiz., 49:12 (2009), 2201–2213 | MR

[12] Temnov V. M., Titarenko A. A., “Modelirovanie mnogostupenchatykh i plavnykh perekhodov dlya ustroistv KVCh i opticheskogo diapazonov”, Fiz. volnovykh protsessov i radiotekhn. sistemy, 2000, no. 2, 32–38

[13] Raevskii S. B., Titarenko A. A., “Raschet otkrytykh prodolno-regulyarnykh dielektricheskikh volnovodov s proizvolnym poperechno-neodnorodnym secheniem”, Radiotekhn. i elektronika, 54:11 (2009), 1285–1299