A finite difference scheme of improved accuracy on a priori adapted grids for a singularly perturbed parabolic convection–diffusion equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 10, pp. 1816-1839 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the case of the Dirichlet problem for a singularly perturbed parabolic convection–diffusion equation with a small parameter $\varepsilon$ multiplying the higher order derivative, a finite difference scheme of improved order of accuracy that converges almost $\varepsilon$-uniformly (that is, the convergence rate of this scheme weakly depends on $\varepsilon$) is constructed. When $\varepsilon$ is not very small, this scheme converges with an order of accuracy close to two. For the construction of the scheme, we use the classical monotone (of the first order of accuracy) approximations of the differential equation on a priori adapted locally uniform grids that are uniform in the domains where the solution is improved. The boundaries of such domains are determined using a majorant of the singular component of the grid solution. The accuracy of the scheme is improved using the Richardson technique based on two embedded grids. The resulting scheme converges at the rate of $O((\varepsilon^{-1}N^{-K}\ln^2N)^2+N^{-2}\ln^4N+N^{-2}_0)$ as $N,N_0\to\infty$, where $N$ and $N_0$ determine the number of points in the meshes in $x$ and in $t$, respectively, and $K$ is a prescribed number of iteration steps used to improve the grid solution. Outside the $\sigma$-neighbourhood of the lateral boundary near which the boundary layer arises, the scheme converges with the second order in $t$ and with the second order up to a logarithmic factor in $x$; here, $\sigma=O(N^{-(K-1)}\ln^2N)$. The almost $\varepsilon$-uniformly convergent finite difference scheme converges with the defect of $\varepsilon$-uniform convergence $\nu$, namely, under the condition $N^{-1}\ll\varepsilon^{\nu}$, where $\nu$ determining the required number of iteration steps $K$ ($K=K(\nu)$) can be chosen sufficiently small in the interval (0, 1]. When $\varepsilon^{-1}=O(N^{K-1})$, the scheme converges at the rate of $O(N^{-2}\ln^4N+N^{-2}_0)$.
@article{ZVMMF_2011_51_10_a6,
     author = {G. I. Shishkin},
     title = {A~finite difference scheme of improved accuracy on a~priori adapted grids for a~singularly perturbed parabolic convection{\textendash}diffusion equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1816--1839},
     year = {2011},
     volume = {51},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_10_a6/}
}
TY  - JOUR
AU  - G. I. Shishkin
TI  - A finite difference scheme of improved accuracy on a priori adapted grids for a singularly perturbed parabolic convection–diffusion equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1816
EP  - 1839
VL  - 51
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_10_a6/
LA  - ru
ID  - ZVMMF_2011_51_10_a6
ER  - 
%0 Journal Article
%A G. I. Shishkin
%T A finite difference scheme of improved accuracy on a priori adapted grids for a singularly perturbed parabolic convection–diffusion equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1816-1839
%V 51
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_10_a6/
%G ru
%F ZVMMF_2011_51_10_a6
G. I. Shishkin. A finite difference scheme of improved accuracy on a priori adapted grids for a singularly perturbed parabolic convection–diffusion equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 10, pp. 1816-1839. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_10_a6/

[1] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992

[2] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems, World Scient., Singapore, 1996 | MR

[3] Farrell P. A., Hegarty A. F., Miller J. J. H., O'Riordan E., Shishkin G. I., Robust Computational techniques for boundary layers, Chapman and Hall/CRC, Boca Raton, 2000 | MR | Zbl

[4] Roos H.-G., Stynes M., Tobiska L., Numerical methods for singularly perturbed differential equations. Convection-diffusion and flow Problems, 2-nd ed., Springer, Berlin, 2008 | MR

[5] Shishkin G. I., Shishkina L. P., Difference methods for singular perturbation problems, Ser. Monographs and Surveys in Pure and Applied Math, Chapman and Hall/CRC, 2009 | MR | Zbl

[6] Shishkin G. I., “Aposteriorno adaptiruemye (po gradientu resheniya) setki v approksimatsii singulyarno vozmuschennykh uravnenii konvektsii-diffuzii”, Vychisl. tekhnologii, 6:1–2 (2001), 72–87 | MR | Zbl

[7] Shishkin G. I., “Approksimatsiya singulyarno vozmuschennykh uravnenii reaktsii-diffuzii na adaptivnykh setkakh”, Matem. modelirovanie, 13:3 (2001), 103–118 | MR | Zbl

[8] Shishkin G. I., Shishkina L. P., Hemker P. W., “A class of singularly perturbed convection-diffusion problems with a moving interior layer. A posteriori adaptive mesh technique”, Comput. Meth. Appl. Math., 4:1 (2004), 105–127 | MR | Zbl

[9] Shishkin G. I., “Ispolzovanie reshenii na vlozhennykh setkakh pri approksimatsii singulyarno vozmuschennogo parabolicheskogo uravneniya konvektsii-tsiffuzii na adaptiruyuschikhsya setkakh”, Zh. vychisl. matem. i matem. fiz., 46:9 (2006), 1617–1637 | MR

[10] Shishkin G. I., “A finite difference scheme on a priori adapted meshes for a singularly perturbed parabolic convection-diffusion equation”, Numer. Math. Theor. Meth. Appl., 1:2 (2008), 214–234 | MR | Zbl

[11] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl

[12] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[13] Samarskii A. A., Nikolaev E. C., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[14] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1989 | MR

[15] Marchuk G. I., Shaidurov V. V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979 | MR

[16] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[17] Khemker P. V., Shishkin G. I., Shishkina L. P., “Dekompozitsiya metoda Richardsona vysokogo poryadka tochnosti dlya singulyarno vozmuschennogo ellipticheskogo uravneniya reaktsii-diffuzii”, Zh. vychisl. matem. i matem. fiz., 44:2 (2004), 329–337 | MR

[18] Shishkin G. I., Shishkina L. P., “Metod Richardsona vysokogo poryadka tochnosti dlya kvazilineinogo singulyarno vozmuschennogo ellipticheskogo uravneniya reaktsii-diffuzii”, Differents. ur-niya, 41:7 (2005), 980–989 | MR | Zbl