A numerical experiment related to Zolotarev polynomials for weighted sup-norm
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 10, pp. 1790-1795 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The behavior of the graph of the function $Z_n(t)=\|Z'_n(\cdot,t)\|/\|Z_n(\cdot,t)\|$ is discussed in the case where the functions $Z_n(x,t)$ are the Zolotarev polynomials and the norm is a weighted sup-norm. Based on calculations performed for various weights, it is conjectured that the characteristic jump in $Z_n(t)$ in the case of the Laguerre weight on a semiaxis is caused by the fact that the weight function is not symmetric about the midpoint of the interval.
@article{ZVMMF_2011_51_10_a3,
     author = {V. P. Sklyarov},
     title = {A~numerical experiment related to {Zolotarev} polynomials for weighted sup-norm},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1790--1795},
     year = {2011},
     volume = {51},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_10_a3/}
}
TY  - JOUR
AU  - V. P. Sklyarov
TI  - A numerical experiment related to Zolotarev polynomials for weighted sup-norm
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1790
EP  - 1795
VL  - 51
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_10_a3/
LA  - ru
ID  - ZVMMF_2011_51_10_a3
ER  - 
%0 Journal Article
%A V. P. Sklyarov
%T A numerical experiment related to Zolotarev polynomials for weighted sup-norm
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1790-1795
%V 51
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_10_a3/
%G ru
%F ZVMMF_2011_51_10_a3
V. P. Sklyarov. A numerical experiment related to Zolotarev polynomials for weighted sup-norm. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 10, pp. 1790-1795. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_10_a3/

[1] Markov A. A., Ob odnom voprose D. I. Mendeleeva, Izbr. tr., Gostekhteorizdat, M.–L., 1948, 51–75

[2] Voronovskaya E. V., “Funktsional pervoi proizvodnoi i utochnenie teoremy A. A. Markova”, Izv. AN SSSR. Ser. matem., 23:6 (1959), 951–962 | Zbl

[3] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl

[4] Zolotarev E. I., Prilozhenie ellipticheskikh funktsii k voprosam o funktsiyakh, naimenee i naibolee uklonyayuschikhsya ot nulya (1877), sobr. soch., v. 2, Izd-vo AN SSSR, L., 1932

[5] Markov V. A., O funktsiyakh, naimenee uklonyayuschikhsya ot nulya v zadannom promezhutke, SPb., 1892 | Zbl

[6] Schonhage A., Approximationstheorie, Walter de Gruytor and Co., Berlin–New York, 1971 | MR

[7] Bogatyrev A. B., “Effektivnyi podkhod k zadacham o naimenshem uklonenii”, Matem. sb., 193:12 (2002), 21–40 | MR | Zbl

[8] Milev L., “Numerical computation of the Markov factors for the systems of polynomials with the Hermite and Laguerre weights, Numerical methods and applications”, 6th Internat. Conf. NMA 2006 (Borovets, Bulgaria, August 20–24, 2006), Lect. Notes in Comput. Sci., 4310, Springer, Berlin, 386–393 | DOI | Zbl

[9] Sklyarov V. P., “O tochnoi konstante v neravenstve Markova dlya vesa Lagerra”, Matem. sb., 200:6 (2009), 109–118 | MR | Zbl

[10] Mhaskar H. N., Saff E. B., “Where does the sup norm of a weighted polynomial live?”, Constr. Approx., 1 (1985), 71–91 | DOI | MR | Zbl

[11] Loran P. Zh., Approksimatsiya i optimizatsiya, Mir, M., 1975

[12] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988 | MR