Hermite spline interpolation in the discrete periodic case
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 10, pp. 1775-1789
Voir la notice de l'article provenant de la source Math-Net.Ru
Interpolation of discrete periodic complex-valued functions by the values and increments given at equidistant nodes is examined. A space of discrete functions in which the interpolation problem is uniquely solvable is introduced. Extremal and limit properties of the solution to this problem are found.
@article{ZVMMF_2011_51_10_a2,
author = {N. V. Chashnikov},
title = {Hermite spline interpolation in the discrete periodic case},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1775--1789},
publisher = {mathdoc},
volume = {51},
number = {10},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_10_a2/}
}
TY - JOUR AU - N. V. Chashnikov TI - Hermite spline interpolation in the discrete periodic case JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2011 SP - 1775 EP - 1789 VL - 51 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_10_a2/ LA - ru ID - ZVMMF_2011_51_10_a2 ER -
N. V. Chashnikov. Hermite spline interpolation in the discrete periodic case. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 10, pp. 1775-1789. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_10_a2/