On the completeness of the system of eigenvectors of electromagnetic waveguides
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 10, pp. 1883-1888 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Several statements of the spectral problem in the theory of regular waveguides are considered. The completeness of the system of eigenvectors of these problems, which is a consequence of the earlier established completeness property of a certain system of eigenvectors, is proved.
@article{ZVMMF_2011_51_10_a11,
     author = {A. L. Delitsyn},
     title = {On the completeness of the system of eigenvectors of electromagnetic waveguides},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1883--1888},
     year = {2011},
     volume = {51},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_10_a11/}
}
TY  - JOUR
AU  - A. L. Delitsyn
TI  - On the completeness of the system of eigenvectors of electromagnetic waveguides
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1883
EP  - 1888
VL  - 51
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_10_a11/
LA  - ru
ID  - ZVMMF_2011_51_10_a11
ER  - 
%0 Journal Article
%A A. L. Delitsyn
%T On the completeness of the system of eigenvectors of electromagnetic waveguides
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1883-1888
%V 51
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_10_a11/
%G ru
%F ZVMMF_2011_51_10_a11
A. L. Delitsyn. On the completeness of the system of eigenvectors of electromagnetic waveguides. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 10, pp. 1883-1888. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_10_a11/

[1] Krasnushkin P. E., Moiseev E. I., “O vozbuzhdenii vynuzhdennykh kolebanii v sloistom radiovolnovode”, Dokl. AN SSSR, 264:5 (1982), 1123–1127 | MR

[2] Smirnov Yu. G., “Metod operatornykh puchkov v kraevykh zadachakh sopryazheniya dlya sistemy ellipticheskikh uravnenii”, Differents. ur-niya, 27:1 (1991), 140–147 | MR | Zbl

[3] Smirnov Yu. G., “O polnote sistemy sobstvennykh i prisoedinennykh voln chastichno zapolnennogo volnovoda s neregulyarnoi granitsei”, Dokl. AN SSSR, 297:4 (1987), 829–832

[4] Smirnov Yu. G., “Primenenie metoda operatornykh puchkov v zadache o sobstvennykh volnakh chastichno zapolnennogo volnovoda”, Dokl. AN SSSR, 312:3 (1990), 597–599

[5] Zilbergleit A. S., Kopilevich Yu. I., Spektralnaya teoriya volnovodov, Izd-vo Fiz.-tekhn. in-ta, Leningrad, 1983

[6] Delitsyn A. L., “Ob odnom podkhode k zadache o polnote sistemy sobstvennykh i prisoedinennykh voln volnovoda”, Differents. ur-niya, 36:5 (2000), 629–633 | MR | Zbl

[7] Delitsyn A. L., “O postanovke kraevykh zadach dlya sistemy uravnenii Maksvella v tsilindre i ikh razreshimosti”, Izv. RAN SSSR. Ser. matem., 71:3 (2007), 61–112 | MR | Zbl

[8] Keldysh M. V., “O sobstvennykh znacheniyakh i sobstvennykh funktsiyakh nekotorykh klassov nesamosopryazhennykh uravnenii”, Dokl. AN SSSR, 87:1 (1951), 11–14

[9] Girault V., Raviart P. A., Finite element methods for Navier–Stokes equations. Theory and algorithms, Springer, Berlin, 1986 | MR | Zbl