On the quadratic convergence of the Aitken $\Delta^2$ process
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 10, pp. 1770-1774 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Aitken $\Delta^2$ method for finding fixed points of scalar mappings is interpreted as a modification of the Wegstein method. Based on this approach, conditions for the quadratic convergence of this method are obtained for various situations of convergence/divergence of simple iteration. An algorithm for calculating fixed points that keeps track of these situations is presented.
@article{ZVMMF_2011_51_10_a1,
     author = {V. M. Verzhbitskii and I. F. Yumanova},
     title = {On the quadratic convergence of the {Aitken} $\Delta^2$ process},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1770--1774},
     year = {2011},
     volume = {51},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_10_a1/}
}
TY  - JOUR
AU  - V. M. Verzhbitskii
AU  - I. F. Yumanova
TI  - On the quadratic convergence of the Aitken $\Delta^2$ process
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1770
EP  - 1774
VL  - 51
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_10_a1/
LA  - ru
ID  - ZVMMF_2011_51_10_a1
ER  - 
%0 Journal Article
%A V. M. Verzhbitskii
%A I. F. Yumanova
%T On the quadratic convergence of the Aitken $\Delta^2$ process
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1770-1774
%V 51
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_10_a1/
%G ru
%F ZVMMF_2011_51_10_a1
V. M. Verzhbitskii; I. F. Yumanova. On the quadratic convergence of the Aitken $\Delta^2$ process. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 10, pp. 1770-1774. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_10_a1/

[1] Verzhbitskii V. M., Chislennye metody (lineinaya algebra i nelineinye uravneniya), izd. 2-e, ispr., Oniks 21 vek, M., 2005

[2] Verzhbitskii V. M., Osnovy chislennykh metodov, izd. 3-e, ster., Vyssh. shkola, M., 2009

[3] Mann W. R., “Mean value methods in iteration”, Proc. Amer. Math. Soc., 4 (1953), 506–510 | DOI | MR | Zbl

[4] Ishikawa S., “Fixed points by a new iteration method”, Proc. Amer. Math. Soc., 44 (1974), 147–150 | DOI | MR | Zbl

[5] Şoltuz Ş. M., “The equivalence between Krasnoselskij, Mann, Ishikawa, Noor and multistep iterations”, Math. Communs., 12:1 (2007), 53–61 | MR | Zbl

[6] Verzhbitskii V. M., Yumanova I. F., “Ob odnom analoge metoda Vegsteina uskoreniya skhodimosti iteratsionnykh protsessov”, Intellektualnye sistemy v proizvodstve, 2010, no. 1(15), 18–28

[7] Wegstein J. H., “Accelerating convergence of iterative processes”, Communs. ACM, 1:6 (1958), 9–13 | DOI | Zbl