Airfoil flow over the interface of a two-layer ponderable fluid with a free surface and a rigid bottom
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 9, pp. 1632-1639 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The theory of small-amplitude waves is used to analyze the hydrofoil flow of a two-layer heavy fluid. The upper layer is bounded by a free surface, while the lower layer is bounded by a horizontal bottom. The fluid layers have different densities and flow velocities. The problem is solved via the simulation of boundaries by singularities. Due to this method, the boundary condition specified on the contour is satisfied analytically exactly. By using the interface conditions, the problem is reduced to two systems of three singular integrodifferential equations. A special regularization technique gives systems of linear integral equations, which are solved numerically by applying the method of successive approximations with the use of a specially developed algorithm and a FORTRAN program. The numerical-analytical method developed applies to a wing section of arbitrary, including actual, shape placed in a fluid flow with interfaces of various types. The computations were performed for a NACA 66mod hydrofoil. The influence exerted by the angle of attack and the interfaces on the hydrodynamic hydrofoil characteristics is investigated in different ranges of Froude numbers. Shapes of internal and surface waves are obtained. Hydrodynamic effects associated with the dead water phenomenon are detected.
@article{ZVMMF_2010_50_9_a7,
     author = {K. V. Kirillin and S. I. Filippov},
     title = {Airfoil flow over the interface of a two-layer ponderable fluid with a free surface and a rigid bottom},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1632--1639},
     year = {2010},
     volume = {50},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a7/}
}
TY  - JOUR
AU  - K. V. Kirillin
AU  - S. I. Filippov
TI  - Airfoil flow over the interface of a two-layer ponderable fluid with a free surface and a rigid bottom
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 1632
EP  - 1639
VL  - 50
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a7/
LA  - ru
ID  - ZVMMF_2010_50_9_a7
ER  - 
%0 Journal Article
%A K. V. Kirillin
%A S. I. Filippov
%T Airfoil flow over the interface of a two-layer ponderable fluid with a free surface and a rigid bottom
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 1632-1639
%V 50
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a7/
%G ru
%F ZVMMF_2010_50_9_a7
K. V. Kirillin; S. I. Filippov. Airfoil flow over the interface of a two-layer ponderable fluid with a free surface and a rigid bottom. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 9, pp. 1632-1639. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a7/

[1] Sturova I. V., Chislennye raschety v zadachakh generatsii ploskikh poverkhnostnykh voln, Preprint, VTs SO AN SSSR, Krasnoyarsk, 1990

[2] Gorlov S. I., “Methods for solving steady problems of the generation of surface and interval waves by a body moving in a liquid”, Russ. J. Engng Thermophys., 9:4 (1999), 297–319

[3] Filippov S. I., Gidrodinamika krylovogo profilya vblizi granits razdela, Izd-vo Kazanskogo matem. ob-va, Kazan, 2004

[4] Sturova I. V., “Ploskaya zadacha ob obtekanii krugovogo tsilindra ravnomernym potokom dvukhsloinoi zhidkosti konechnoi glubiny”, Prikl. matem. i tekhn. fiz., 39:6 (1998), 91–101 | MR | Zbl

[5] Kirillin K. V., Filippov S. I., “Tsirkulyatsionnoe obtekanie tsilindra v ogranichennom potoke nad liniei razdela dvukh zhidkostei”, Vestn. Kazanskogo tekhnol. un-ta, 2006, no. 3, 339–346

[6] Kirillin K. V., Filippov S. I., “Ustanovivsheesya postupatelnoe dvizhenie tsilindra pod granitsei razdela zhidkostei konechnoi glubiny”, Vestn. Kazanskogo tekhnol. un-ta, 2006, no. 5, 86–95

[7] Tumashev G. G., Cherepenin N. D., “Zadacha o dvizhenii kruglogo tsilindra pod svobodnoi poverkhnostyu tyazheloi zhidkosti”, Tr. seminara po kraevym zadacham, 10, Izd-vo Kazanskogo un-ta, Kazan, 1973, 140–151

[8] Filippov S. I., “Obtekanie podvodnogo krylovogo profilya”, Izv. RAN. Mekhan. zhidkosti i gaza, 2001, no. 3, 155–162

[9] Miln-Tomson L. M., Teoreticheskaya gidrodinamika, Mir, M., 1964

[10] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Nauka, M., 1970 | MR

[11] Lotfullin M. V., Sturova I. V., Filippov S. I., “Gidrodinamicheskoe vozdeistvie na kontur, obtekaemyi ravnomernym potokom dvukhsloinoi zhidkosti”, Vychisl. tekhnologii (Novosibirsk), 3:8 (1994), 108–115

[12] Lotfullin M. V., “Chislennyi metod konformnogo otobrazheniya odnosvyaznykh oblastei”, Tr. seminara po kraevym zadacham, 22, Izd-vo Kazanskogo un-ta, Kazan, 1985, 148–150 | MR

[13] Sretenskii L. N., Teoriya volnovykh dvizhenii zhidkosti, Nauka, M., 1977

[14] Kirillin K. V., Filippov S. I., “Obtekanie krylovogo profilya nad granitsei razdela dvukh vesomykh zhidkostei konechnoi glubiny”, Izv. Kazanskogo gos. arkhitekturno-stroit. un-ta, 2009, no. 1 (11), 326–331