Effective direct methods in problem of the construction of optimal aerodynamic shapes
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 9, pp. 1624-1631
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              A direct method for aerodynamic shape optimization based on the use of Bézier spline approximation is proposed. The method is tested as applied to the optimization of the supersonic part of an axisymmetric de Laval nozzle. The optimization results are compared with the exact solution obtained by the control contour method (variational nozzle) and with nozzles constructed using another direct method, namely, local linearization. It is shown that both direct optimization methods can be used on rather coarse grids without degrading the accuracy of the solution. The optimization procedure involves the isoperimetric condition that the surface area of the nozzle is given and fixed, which prevents the use of the control contour method. Optimization with allowance for viscosity is performed using the method. For fairly short maximum possible nozzle lengths in the range of Reynolds numbers under consideration, it is shown that allowance for viscosity does not improve the nozzle shape produced by optimization based on the Euler equations. The role of viscosity is reduced to the determination of an optimal length.
            
            
            
          
        
      @article{ZVMMF_2010_50_9_a6,
     author = {A. A. Kraǐko and K. S. P'yankov},
     title = {Effective direct methods in problem of the construction of optimal aerodynamic shapes},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1624--1631},
     publisher = {mathdoc},
     volume = {50},
     number = {9},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a6/}
}
                      
                      
                    TY - JOUR AU - A. A. Kraǐko AU - K. S. P'yankov TI - Effective direct methods in problem of the construction of optimal aerodynamic shapes JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 1624 EP - 1631 VL - 50 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a6/ LA - ru ID - ZVMMF_2010_50_9_a6 ER -
%0 Journal Article %A A. A. Kraǐko %A K. S. P'yankov %T Effective direct methods in problem of the construction of optimal aerodynamic shapes %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2010 %P 1624-1631 %V 50 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a6/ %G ru %F ZVMMF_2010_50_9_a6
A. A. Kraǐko; K. S. P'yankov. Effective direct methods in problem of the construction of optimal aerodynamic shapes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 9, pp. 1624-1631. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a6/