@article{ZVMMF_2010_50_9_a2,
author = {F. M. Namazov and K. I. Khudaverdiev},
title = {Investigation of the classical solution of a one-dimensional mixed problem for a class of semilinear long-wave equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1569--1586},
year = {2010},
volume = {50},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a2/}
}
TY - JOUR AU - F. M. Namazov AU - K. I. Khudaverdiev TI - Investigation of the classical solution of a one-dimensional mixed problem for a class of semilinear long-wave equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 1569 EP - 1586 VL - 50 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a2/ LA - ru ID - ZVMMF_2010_50_9_a2 ER -
%0 Journal Article %A F. M. Namazov %A K. I. Khudaverdiev %T Investigation of the classical solution of a one-dimensional mixed problem for a class of semilinear long-wave equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2010 %P 1569-1586 %V 50 %N 9 %U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a2/ %G ru %F ZVMMF_2010_50_9_a2
F. M. Namazov; K. I. Khudaverdiev. Investigation of the classical solution of a one-dimensional mixed problem for a class of semilinear long-wave equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 9, pp. 1569-1586. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a2/
[1] Radochova V., “Einige Eigenschaften der losung der Wellengleichung mit der Korrektion von Rayleigh”, Arch. Mat., 8:3 (1972), 125–129 | MR
[2] Radochova V., “Die losung der partiellen Differentialgleichung $U_{xxtt} = A(t, x)U_{xx} + B(t, x)U_{tt}$ mit gewissen Nebenbedingungen”, Cas. Pestov. Math., 98:4 (1973), 389–399 | MR
[3] Seyler C. E., Fenstermacher D. L., “A symmetric-regularized-long-wave equation”, Phys. Fluids, 27:1 (1984), 4–7 | DOI | Zbl
[4] Clarkson P. A., Le Vegue R. J., Saxton K., “Solitary-wave interactions in elastic rods”, Stud. Appl. Math., 75:2 (1986), 95–121 | MR | Zbl
[5] Gabov S. A., Orazov B. B., “Ob uravnenii $\frac{\partial^2}{\partial t^2}[U_{xx}-U]+U_{xx}=0$ i nekotorykh svyazannykh s nim zadachakh”, Zh. vychisl. matem. i matem. fiz., 26:1 (1986), 92–102 | MR | Zbl
[6] Muto V., Halding I., Christiansen P. L., Scott A. C., “A solution model for microwave absorption in DNA”, IMACS Ann. Comput. and Appl. Math., 1–4, no. 1, 1989, 119–122 | MR
[7] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007
[8] Alshin A. B., Pletner Yu. D., Sveshnikov A. G., “Odnoznachnaya razreshimost zadachi Dirikhle dlya uravneniya ionno-zvukovykh voln v plazme”, Dokl. RAN, 361:6 (1998), 749–751 | MR
[9] Khudaverdiev K. I., Namazov F. M., “Issledovanie resheniya pochti vsyudu odnomernoi smeshannoi zadachi dlya odnogo klassa polulineinykh simmetrichno regulyarizovannykh uravnenii dlinnykh voln”, Tr. Azerbaidzhanskogo matem. ob-va, 2, Baku, 1996, 198–222 | MR
[10] Khudaverdiev K. I., “Issledovanie klassicheskogo resheniya mnogomernoi smeshannoi zadachi dlya odnogo klassa kvazilineinykh giperbolicheskikh uravnenii vtorogo poryadka”, Uch. zap. Az. gosun-ta. Ser. fiz.-matem. nauk, 1972, no. 1, 3–27 | MR
[11] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhteorizdat, M., 1956 | MR