Investigation of the classical solution of a one-dimensional mixed problem for a class of semilinear long-wave equations
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 9, pp. 1569-1586
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              Many problems in mathematical physics are reduced to one- or multidimensional initial and initial-boundary value problems for, generally speaking, strongly nonlinear Sobolev-type equations. In this work, local and global classical solvability is studied for the one-dimensional mixed problem with homogeneous Riquier-type boundary conditions for a class of semilinear long-wave equations {\footnotesize$$ U_{tt}(t, x)-U_{xx}(t, x)-\alpha U_{ttxx}(t, x)=F(t, x, U(t, x), U_x(t, x), U_{xx}(t, x), U_t(t, x), U_{tx}(t, x), U_{txx}(t, x)), $$} where $\alpha>0$ is a fixed number, $0\leq t\leq T$, $0\leq x\leq\pi$, $0$, $F$ is a given function, and $U(t, x)$ is the sought function. A uniqueness theorem for the mixed problem is proved using the Gronwall–Bellman inequality. A local existence result is proved by applying the generalized contraction mapping principle combined with the Schauder fixed point theorem. The method of a priori estimates is used to prove the global existence of a classical solution to the mixed problem.
            
            
            
          
        
      @article{ZVMMF_2010_50_9_a2,
     author = {F. M. Namazov and K. I. Khudaverdiev},
     title = {Investigation of the classical solution of a one-dimensional mixed problem for a class of semilinear long-wave equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1569--1586},
     publisher = {mathdoc},
     volume = {50},
     number = {9},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a2/}
}
                      
                      
                    TY - JOUR AU - F. M. Namazov AU - K. I. Khudaverdiev TI - Investigation of the classical solution of a one-dimensional mixed problem for a class of semilinear long-wave equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 1569 EP - 1586 VL - 50 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a2/ LA - ru ID - ZVMMF_2010_50_9_a2 ER -
%0 Journal Article %A F. M. Namazov %A K. I. Khudaverdiev %T Investigation of the classical solution of a one-dimensional mixed problem for a class of semilinear long-wave equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2010 %P 1569-1586 %V 50 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a2/ %G ru %F ZVMMF_2010_50_9_a2
F. M. Namazov; K. I. Khudaverdiev. Investigation of the classical solution of a one-dimensional mixed problem for a class of semilinear long-wave equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 9, pp. 1569-1586. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a2/
