Reconstruction of dependence based on Bayesian correction of a collection of pattern recognition algorithms
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 9, pp. 1687-1696 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Estimation of dependence of a scalar variable on the vector of independent variables based on a training sample is considered. No a priori conditions are imposed on the form of the function. An approach to the estimation of the functional dependence is proposed based on the solution of a finite number of special classification problems constructed on the basis of the training sample and on the subsequent prediction of the value of the function as a group decision. A statistical model and Bayes’ formula are used to combine the recognition results. A generic algorithm for constructing the regression is proposed for different approaches to the selection of the committee of classification algorithms and to the estimation of their probabilistic characteristics. Comparison results of the proposed approach with the results obtained using other models for the estimation of dependences are presented.
@article{ZVMMF_2010_50_9_a10,
     author = {V. V. Ryazanov and Yu. I. Tkachev},
     title = {Reconstruction of dependence based on {Bayesian} correction of a collection of pattern recognition algorithms},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1687--1696},
     year = {2010},
     volume = {50},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a10/}
}
TY  - JOUR
AU  - V. V. Ryazanov
AU  - Yu. I. Tkachev
TI  - Reconstruction of dependence based on Bayesian correction of a collection of pattern recognition algorithms
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 1687
EP  - 1696
VL  - 50
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a10/
LA  - ru
ID  - ZVMMF_2010_50_9_a10
ER  - 
%0 Journal Article
%A V. V. Ryazanov
%A Yu. I. Tkachev
%T Reconstruction of dependence based on Bayesian correction of a collection of pattern recognition algorithms
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 1687-1696
%V 50
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a10/
%G ru
%F ZVMMF_2010_50_9_a10
V. V. Ryazanov; Yu. I. Tkachev. Reconstruction of dependence based on Bayesian correction of a collection of pattern recognition algorithms. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 9, pp. 1687-1696. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a10/

[1] Dreiper N., Smit G., Prikladnoi regressionnyi analiz, Izdat. dom “Vilyams”, M., 2007

[2] Khardle V., Prikladnaya neparametricheskaya regressiya, Mir, M., 1993 | MR

[3] Baskakova L. V., Zhuravlev Yu. I., “Model raspoznayuschikh algoritmov s predstavitelnymi naborami i sistemami opornykh mnozhestv”, Zh. vychisl. matem. i matem. fiz., 21:5 (1981), 1264–1275 | MR | Zbl

[4] Dmitriev A. N., Zhuravlev Yu. I., Krendelev F. P., “O matematicheskikh printsipakh klassifikatsii predmetov i yavlenii”, Diskretnyi analiz, 7, IM SO AN SSSR, Novosibirsk, 1966, 3–11

[5] Duda R., Khart P., Raspoznavanie obrazov i analiz stsen, Mir, M., 1976, 511 pp.

[6] Zhuravlev Yu. I., “Ob algebraicheskom podkhode k resheniyu zadach raspoznavaniya ili klassifikatsii”, Probl. kibernetiki, 33, Nauka, M., 1978, 5–68

[7] Zhuravlev Yu. I., Ryazanov V. V., Senko O. V., Raspoznavanie. Matematicheskie metody. Programmnaya sistema. Prakticheskie primeneniya, Fazis, M., 2005

[8] Ryazanov V. V., “Logicheskie zakonomernosti v zadachakh raspoznavaniya (parametricheskii podkhod)”, Zh. vychisl. matem. i matem. fiz., 47:10 (2007), 1793–1808 | MR

[9] Uossermen F., Neirokompyuternaya tekhnika, Mir, M., 1992

[10] Burges Ch. J. C., “A tutorial on support vector machines for pattern recognition”, Data Mining and Knowledge Discovery, 2:2 (1998), 121–167 | DOI

[11] Zhuravlev Yu. I., “Korrektnye algebry nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov. I; II; III”, Kibernetika, 1977, no. 4, 5–17; No 6; 1978, No 2, 35–43 | Zbl

[12] Domingos P., Pazzani M., “On the optimality of the simple Bayesian classifier under zero-one loss”, Machine Learning, 29 (1997), 103–130 | DOI | Zbl