Conditional $\varepsilon$-uniform convergence of adaptation algorithms in the finite element method for singularly perturbed problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 9, pp. 1550-1568 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The boundary value problem for the ordinary differential equation of reaction-diffusion on the interval $[-1, 1]$ is examined. The highest derivative in this equation appears with a small parameter $\varepsilon^2$ ($\varepsilon\in (0, 1]$). As the small parameter approaches zero, boundary layers arise in the neighborhood of the interval endpoints. An algorithm for the construction of a posteriori adaptive piecewise uniform grids is proposed. In the adaptation process, the edges of the boundary layers are located more accurately and the grid on the boundary layers is repeatedly refined. To find an approximate solution, the finite element method is used. The sequence of grids constructed by the algorithm is shown to converge "conditionally $\varepsilon$-uniformly" to some limit partition for which the error estimate $O(N^{-2}\ln^3N)$ is proved. The main results are obtained under the assumption that $\varepsilon\ll N^{-1}$, where $N$ is number of grid nodes; thus, conditional $\varepsilon$-uniform convergence is dealt with. The proofs use the Galerkin projector and its property to be quasi-optimal.
@article{ZVMMF_2010_50_9_a1,
     author = {I. A. Blatov and N. V. Dobrobog},
     title = {Conditional $\varepsilon$-uniform convergence of adaptation algorithms in the finite element method for singularly perturbed problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1550--1568},
     year = {2010},
     volume = {50},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a1/}
}
TY  - JOUR
AU  - I. A. Blatov
AU  - N. V. Dobrobog
TI  - Conditional $\varepsilon$-uniform convergence of adaptation algorithms in the finite element method for singularly perturbed problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 1550
EP  - 1568
VL  - 50
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a1/
LA  - ru
ID  - ZVMMF_2010_50_9_a1
ER  - 
%0 Journal Article
%A I. A. Blatov
%A N. V. Dobrobog
%T Conditional $\varepsilon$-uniform convergence of adaptation algorithms in the finite element method for singularly perturbed problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 1550-1568
%V 50
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a1/
%G ru
%F ZVMMF_2010_50_9_a1
I. A. Blatov; N. V. Dobrobog. Conditional $\varepsilon$-uniform convergence of adaptation algorithms in the finite element method for singularly perturbed problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 9, pp. 1550-1568. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a1/

[1] Liseikin V. D., Metody postroeniya setok, Springer, 1999 | MR | Zbl

[2] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992

[3] Shishkin G. I., “Setochnaya approksimatsiya parabolicheskogo uravneniya konvektsii–diffuzii na apriorno adaptiruyuschikhsya setkakh; $\varepsilon$-ravnomerno skhodyaschiesya skhemy”, Zh. vychisl. matem. i matem. fiz., 48:6 (2008), 1014–1033 | Zbl

[4] Shishkin G. I., “Setochnaya approksimatsiya singulyarno vozmuschennykh kraevykh zadach na lokalno pereizmelchaemykh setkakh. Uravnenie konvektsii-diffuzii”, Zh. vychisl. matem. i matem. fiz., 40:5 (2000), 714–725 | MR | Zbl

[5] Shishkin G. I., “Aposteriorno adaptiruemye (po gardientu resheniya) v approksimatsii singulyarno vozmuschennykh uravnenii konvektsii–diffuzii”, Vychisl. tekhnologii, 6:1 (2001), 72–87 | MR | Zbl

[6] Shishkin G. I., “Approksimatsiya singulyarno vozmuschennykh uravnenii reaktsii-diffuzii na adaptivnykh setkakh”, Matem. modelirovanie, 13:3 (2001), 103–118 ; 11:12 (1999), 87–104 | MR | Zbl | MR | Zbl

[7] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR

[8] Blatov I. A., Strygin V. V., Elementy teorii splainov i metod konechnykh elementov dlya zadach s pogransloem, VGU, Voronezh, 1997

[9] Demko S., “Inverses of band matrices and local convergence of spline projection”, SIAM J. Numer. Analys., 14:4 (1977), 616–619 | DOI | MR | Zbl

[10] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[11] Blatov I. A., “O metode konechnykh elementov Galerkina dlya singulyarno vozmuschennykh parabolicheskikh nachalno-kraevykh zadach”, Differents. ur-niya, 32:5 (1996), 661–669 | MR | Zbl

[12] Kalitkin H. H., Chislennye metody, Nauka, M., 1977

[13] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1989 | MR

[14] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859 | Zbl

[15] Lebedev V. I., Funktsionalnyi analiz i vychislitelnaya matematika, Fizmatlit, M., 2000