@article{ZVMMF_2010_50_9_a1,
author = {I. A. Blatov and N. V. Dobrobog},
title = {Conditional $\varepsilon$-uniform convergence of adaptation algorithms in the finite element method for singularly perturbed problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1550--1568},
year = {2010},
volume = {50},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a1/}
}
TY - JOUR AU - I. A. Blatov AU - N. V. Dobrobog TI - Conditional $\varepsilon$-uniform convergence of adaptation algorithms in the finite element method for singularly perturbed problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 1550 EP - 1568 VL - 50 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a1/ LA - ru ID - ZVMMF_2010_50_9_a1 ER -
%0 Journal Article %A I. A. Blatov %A N. V. Dobrobog %T Conditional $\varepsilon$-uniform convergence of adaptation algorithms in the finite element method for singularly perturbed problems %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2010 %P 1550-1568 %V 50 %N 9 %U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a1/ %G ru %F ZVMMF_2010_50_9_a1
I. A. Blatov; N. V. Dobrobog. Conditional $\varepsilon$-uniform convergence of adaptation algorithms in the finite element method for singularly perturbed problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 9, pp. 1550-1568. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a1/
[1] Liseikin V. D., Metody postroeniya setok, Springer, 1999 | MR | Zbl
[2] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992
[3] Shishkin G. I., “Setochnaya approksimatsiya parabolicheskogo uravneniya konvektsii–diffuzii na apriorno adaptiruyuschikhsya setkakh; $\varepsilon$-ravnomerno skhodyaschiesya skhemy”, Zh. vychisl. matem. i matem. fiz., 48:6 (2008), 1014–1033 | Zbl
[4] Shishkin G. I., “Setochnaya approksimatsiya singulyarno vozmuschennykh kraevykh zadach na lokalno pereizmelchaemykh setkakh. Uravnenie konvektsii-diffuzii”, Zh. vychisl. matem. i matem. fiz., 40:5 (2000), 714–725 | MR | Zbl
[5] Shishkin G. I., “Aposteriorno adaptiruemye (po gardientu resheniya) v approksimatsii singulyarno vozmuschennykh uravnenii konvektsii–diffuzii”, Vychisl. tekhnologii, 6:1 (2001), 72–87 | MR | Zbl
[6] Shishkin G. I., “Approksimatsiya singulyarno vozmuschennykh uravnenii reaktsii-diffuzii na adaptivnykh setkakh”, Matem. modelirovanie, 13:3 (2001), 103–118 ; 11:12 (1999), 87–104 | MR | Zbl | MR | Zbl
[7] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR
[8] Blatov I. A., Strygin V. V., Elementy teorii splainov i metod konechnykh elementov dlya zadach s pogransloem, VGU, Voronezh, 1997
[9] Demko S., “Inverses of band matrices and local convergence of spline projection”, SIAM J. Numer. Analys., 14:4 (1977), 616–619 | DOI | MR | Zbl
[10] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR
[11] Blatov I. A., “O metode konechnykh elementov Galerkina dlya singulyarno vozmuschennykh parabolicheskikh nachalno-kraevykh zadach”, Differents. ur-niya, 32:5 (1996), 661–669 | MR | Zbl
[12] Kalitkin H. H., Chislennye metody, Nauka, M., 1977
[13] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1989 | MR
[14] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859 | Zbl
[15] Lebedev V. I., Funktsionalnyi analiz i vychislitelnaya matematika, Fizmatlit, M., 2000