Conditional $\varepsilon$-uniform convergence of adaptation algorithms in the finite element method for singularly perturbed problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 9, pp. 1550-1568
Voir la notice de l'article provenant de la source Math-Net.Ru
The boundary value problem for the ordinary differential equation of reaction-diffusion on the interval $[-1, 1]$ is examined. The highest derivative in this equation appears with a small parameter $\varepsilon^2$ ($\varepsilon\in (0, 1]$). As the small parameter approaches zero, boundary layers arise in the neighborhood of the interval endpoints. An algorithm for the construction of a posteriori adaptive piecewise uniform grids is proposed. In the adaptation process, the edges of the boundary layers are located more accurately and the grid on the boundary layers is repeatedly refined. To find an approximate solution, the finite element method is used. The sequence of grids constructed by the algorithm is shown to converge "conditionally $\varepsilon$-uniformly" to some limit partition for which the error estimate $O(N^{-2}\ln^3N)$ is proved. The main results are obtained under the assumption that $\varepsilon\ll N^{-1}$, where $N$ is number of grid nodes; thus, conditional $\varepsilon$-uniform convergence is dealt with. The proofs use the Galerkin projector and its property to be quasi-optimal.
@article{ZVMMF_2010_50_9_a1,
author = {I. A. Blatov and N. V. Dobrobog},
title = {Conditional $\varepsilon$-uniform convergence of adaptation algorithms in the finite element method for singularly perturbed problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1550--1568},
publisher = {mathdoc},
volume = {50},
number = {9},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a1/}
}
TY - JOUR AU - I. A. Blatov AU - N. V. Dobrobog TI - Conditional $\varepsilon$-uniform convergence of adaptation algorithms in the finite element method for singularly perturbed problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 1550 EP - 1568 VL - 50 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a1/ LA - ru ID - ZVMMF_2010_50_9_a1 ER -
%0 Journal Article %A I. A. Blatov %A N. V. Dobrobog %T Conditional $\varepsilon$-uniform convergence of adaptation algorithms in the finite element method for singularly perturbed problems %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2010 %P 1550-1568 %V 50 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a1/ %G ru %F ZVMMF_2010_50_9_a1
I. A. Blatov; N. V. Dobrobog. Conditional $\varepsilon$-uniform convergence of adaptation algorithms in the finite element method for singularly perturbed problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 9, pp. 1550-1568. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a1/