Explicit multistep methods with extended stability domains
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 9, pp. 1539-1549 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Explicit multistep methods for solving Cauchy problems are examined. The proposed methods have their stability domains extended along the real axis and can be an alternative to one-step Runge–Kutta–Chebyshev methods when stiff problems are solved.
@article{ZVMMF_2010_50_9_a0,
     author = {L. M. Skvortsov},
     title = {Explicit multistep methods with extended stability domains},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1539--1549},
     year = {2010},
     volume = {50},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a0/}
}
TY  - JOUR
AU  - L. M. Skvortsov
TI  - Explicit multistep methods with extended stability domains
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 1539
EP  - 1549
VL  - 50
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a0/
LA  - ru
ID  - ZVMMF_2010_50_9_a0
ER  - 
%0 Journal Article
%A L. M. Skvortsov
%T Explicit multistep methods with extended stability domains
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 1539-1549
%V 50
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a0/
%G ru
%F ZVMMF_2010_50_9_a0
L. M. Skvortsov. Explicit multistep methods with extended stability domains. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 9, pp. 1539-1549. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_9_a0/

[1] Lebedev V. I., “Kak reshat yavnymi metodami zhestkie sistemy differentsialnykh uravnenii”, Vychisl. protsessy i sistemy, 8, Nauka, M., 1991, 237–291 | MR

[2] Lebedev V. I., Medovikov A. A., “Yavnyi metod vtorogo poryadka tochnosti dlya resheniya zhestkikh sistem obyknovennykh differentsialnykh uravnenii”, Izv. vuzov. Matematika, 1998, no. 9, 55–63 | MR | Zbl

[3] Lebedev V. I., “Yavnye raznostnye skhemy dlya resheniya zhestkikh zadach s kompleksnym ili razdelimym spektrom”, Zh. vychisl. matem. i matem. fiz., 40:12 (2000), 1801–1812 | Zbl

[4] Medovikov A. A., “High order explicit methods for parabolic equations”, BIT, 38:2 (1998), 372–390 | DOI | MR | Zbl

[5] Sommeijer B. P., Shampine L. F., Verwer J. D., “RKC: An explicit solver for parabolic PDEs”, J. Comput. Appl. Math., 88:2 (1997), 315–326 | DOI | MR

[6] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999

[7] Abdulle A., Medovikov A. A., “Second order Chebyshev methods based on orthogonal polynomials”, Numerische Mathematik, 90:1 (2001), 1–18 | DOI | MR | Zbl

[8] Abdulle A., “Fourth order Chebyshev methods with recurrence relation”, SIAM J. Sci. Comput., 23:6 (2002), 2041–2054 | DOI | MR | Zbl

[9] Novikov E. A., Yavnye metody dlya zhestkikh sistem, Nauka, Novosibirsk, 1997 | MR

[10] Tsypkin Ya. Z., Osnovy teorii avtomaticheskikh sistem, Nauka, M., 1977 | MR | Zbl

[11] Fowler M. E., Warten R. M., “A numerical integration technique for ordinary differential equations with widely separated eigenvalues”, IBM J. Res. and Development, 11:5 (1967), 537–543 | DOI | MR | Zbl

[12] Skvortsov L. M., “Yavnye adaptivnye metody chislennogo resheniya zhestkikh sistem”, Matem. modelirovanie, 12:12 (2000), 97–107 | MR | Zbl

[13] Skvortsov L. M., “Yavnyi mnogoshagovyi metod chislennogo resheniya zhestkikh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 47:6 (2007), 959–967 | MR

[14] Skvortsov L. M., “Prostye yavnye metody chislennogo resheniya zhestkikh obyknovennykh differentsialnykh uravnenii”, Vychisl. metody i programmirovanie, 9 (2008), 154–162 http://num-meth.srcc.msu.ru/