Features of the linear stage of the development of three-dimensional perturbations in the plane Poiseuille–Couette flow
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 8, pp. 1471-1480 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Within the framework of the triple-deck theory, the linear stage of the development of three-dimensional disturbances in the Poiseuille–Couette flow was investigated. Numerical computations revealed “ripples” developing in the side direction in the initial phase of the linear stage. As in the case of two-dimensional disturbances, an increase in the relative velocity of the walls leads to the splitting of disturbances into two wave packets, of which the first grows faster and moves at a higher velocity. The disturbances propagate within a certain angle range.
@article{ZVMMF_2010_50_8_a9,
     author = {I. V. Savenkov},
     title = {Features of the linear stage of the development of three-dimensional perturbations in the plane {Poiseuille{\textendash}Couette} flow},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1471--1480},
     year = {2010},
     volume = {50},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_8_a9/}
}
TY  - JOUR
AU  - I. V. Savenkov
TI  - Features of the linear stage of the development of three-dimensional perturbations in the plane Poiseuille–Couette flow
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 1471
EP  - 1480
VL  - 50
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_8_a9/
LA  - ru
ID  - ZVMMF_2010_50_8_a9
ER  - 
%0 Journal Article
%A I. V. Savenkov
%T Features of the linear stage of the development of three-dimensional perturbations in the plane Poiseuille–Couette flow
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 1471-1480
%V 50
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_8_a9/
%G ru
%F ZVMMF_2010_50_8_a9
I. V. Savenkov. Features of the linear stage of the development of three-dimensional perturbations in the plane Poiseuille–Couette flow. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 8, pp. 1471-1480. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_8_a9/

[1] Neiland V. Ya., “K teorii otryva laminarnogo pogranichnogo sloya v sverkhzvukovom potoke”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1969, no. 4, 53–58

[2] Stewartson K., Williams P. G., “Self-induced separation”, Proc. Roy. Soc. A, 312:1509 (1969), 181–206 | DOI | Zbl

[3] Messiter A. F., “Boundary-layer flow near the trailing edge of a flat plate”, SIAM J. Appl. Math., 18:1 (1970), 241–257 | DOI | Zbl

[4] Zhuk V. I., Ryzhov O. S., “O svobodnom vzaimodeistvii pristenochnykh sloev s yadrom techeniya Puazeilya”, Dokl. AN SSSR, 257:1 (1981), 55–59 | MR | Zbl

[5] Bogdanova E. V., Ryzhov O. S., “O kolebaniyakh, vozbuzhdaemykh garmonicheskim ostsillyatorom v techenii Puazeilya”, Dokl. AN SSSR, 257:4 (1981), 837–841 | Zbl

[6] Savenkov I. V., “Osobennosti lineinoi stadii razvitiya trekhmernykh volnovykh paketov v ploskom techenii Puazeilya”, Zh. vychisl. matem. i matem. fiz., 49:7 (2009), 1271–1279 | MR

[7] Smith F. T., Cowley S. J., “On the stability of Poiseuille–Couette flow: a bifurcation from infinity”, J. Fluid Mech., 156 (1985), 83–100 | DOI | MR | Zbl

[8] Zhuk V. I., Protsenko I. G., “Asimptoticheskaya struktura volnovykh vozmuschenii v teorii ustoichivosti ploskogo techeniya Kuetta–Puazeilya”, Zh. vychisl. matem. i matem. fiz., 45:6 (2005), 1060–1080 | MR | Zbl

[9] Savenkov I. V., “Osobennosti volnovykh paketov v ploskom techenii Puazeilya–Kuetta”, Zh. vychisl. matem. i matem. fiz., 48:7 (2008), 1274–1281

[10] Smith F. T., “On the high Reynolds number theory of laminar flows”, IMA J. Appl. Math., 28:3 (1982), 207–281 | DOI | MR

[11] Ryzhov O. S., Terentev E. D., “O perekhodnom rezhime, kharakterizuyuschem zapusk vibratora v dozvukovom pogranichnom sloe na plastinke”, Prikl. matem. i mekhan., 50:6 (1986), 974–986 | Zbl

[12] Ryzhov O. S., Savenkov I. V., “Asimptoticheskaya teoriya volnovogo paketa v pogranichnom sloe na plastinke”, Prikl. matem. i mekhan., 51:5 (1987), 820–828 | Zbl