@article{ZVMMF_2010_50_8_a8,
author = {S. V. Gavrilov and A. M. Denisov},
title = {A numerical method for determining the inhomogeneity boundary in the {Dirichlet} problem for the {Laplace} equation in a piecewise-homogeneous medium},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1462--1470},
year = {2010},
volume = {50},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_8_a8/}
}
TY - JOUR AU - S. V. Gavrilov AU - A. M. Denisov TI - A numerical method for determining the inhomogeneity boundary in the Dirichlet problem for the Laplace equation in a piecewise-homogeneous medium JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 1462 EP - 1470 VL - 50 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_8_a8/ LA - ru ID - ZVMMF_2010_50_8_a8 ER -
%0 Journal Article %A S. V. Gavrilov %A A. M. Denisov %T A numerical method for determining the inhomogeneity boundary in the Dirichlet problem for the Laplace equation in a piecewise-homogeneous medium %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2010 %P 1462-1470 %V 50 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_8_a8/ %G ru %F ZVMMF_2010_50_8_a8
S. V. Gavrilov; A. M. Denisov. A numerical method for determining the inhomogeneity boundary in the Dirichlet problem for the Laplace equation in a piecewise-homogeneous medium. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 8, pp. 1462-1470. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_8_a8/
[1] Zakharov E. E., Kalinin A. V., “Chislennoe reshenie trekhmernoi zadachi Dirikhle v kusochno-odnorodnoi srede metodom granichnykh integralnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 49:7 (2009), 1197–1206 | MR
[2] Denisov A. M., Zakharov E. V., Kalinin A. V., Kalinin V. V., “Chislennye metody resheniya nekotorykh obratnykh zadach elektrofiziologii serdtsa”, Differents. ur-niya, 45:7 (2009), 1014–1022 | MR | Zbl
[3] McIver M., “Characterization of surface-breaking cracks in metal sheets by using AC electric fields”, Proc. Roy Soc. A, 421 (1989), 179–194 | DOI | Zbl
[4] Friedman A., Vogelius M., “Determining cracks by boundary measurements”, Indiana Math. J., 38 (1989), 527–556 | DOI | MR | Zbl
[5] McIver M., “An inverse problem in electromagnetic crack detection”, IMA J. Appl. Math., 47 (1991), 127–145 | DOI | MR | Zbl
[6] Nishimura N., Kobayashi S., “A boundary integral-equation method for an inverse problem related to crack detection”, Int. J. Numer. Meth. Engng., 32 (1991), 1371–1387 | DOI | Zbl
[7] Bryan K., Vogelius M., “A uniqueness result concerning the identification of a collection of cracks from finitely many electrostatic boundary measurements”, SIAM. J. Math. Analys., 23 (1992), 950–958 | DOI | MR | Zbl
[8] Bryan K., Vogelius M., “A computational algorithm to determine crack locations from electrostatic boundary measurements the case of multiple cracks”, Int. J. Engng. Sci., 32 (1994), 579–603 | DOI | MR | Zbl
[9] Atkinson C., Aparicio N. D., “An inverse problem method for crack detection in elastic materials under anti-plane strain”, Proc. Roy. Soc. A, 445 (1994), 637–652 | DOI | Zbl
[10] Alessandrini G., Beretta E., Santosa F., Vessella S., “Stability in crack determination from electrostatic measurements at the boundary numerical investigation”, Inverse Problems, 11 (1995), L17–24 | DOI | MR
[11] Kress R., “Inverse boundary value problems in potential theory”, Cubo Math. Educational, 3 (2001), 393–414 | MR | Zbl
[12] Kress R., “Inverse Dirichlet problem and conformal mapping”, Math. Comp. Simulat., 66 (2004), 255–265 | DOI | MR | Zbl