@article{ZVMMF_2010_50_8_a6,
author = {Yu. V. Yurgelenas},
title = {Two-dimensional high-resolution schemes and their application to the modeling of ionized waves of gas discharge},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1420--1437},
year = {2010},
volume = {50},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_8_a6/}
}
TY - JOUR AU - Yu. V. Yurgelenas TI - Two-dimensional high-resolution schemes and their application to the modeling of ionized waves of gas discharge JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 1420 EP - 1437 VL - 50 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_8_a6/ LA - ru ID - ZVMMF_2010_50_8_a6 ER -
%0 Journal Article %A Yu. V. Yurgelenas %T Two-dimensional high-resolution schemes and their application to the modeling of ionized waves of gas discharge %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2010 %P 1420-1437 %V 50 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_8_a6/ %G ru %F ZVMMF_2010_50_8_a6
Yu. V. Yurgelenas. Two-dimensional high-resolution schemes and their application to the modeling of ionized waves of gas discharge. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 8, pp. 1420-1437. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_8_a6/
[1] Dyakov A. F., Bobrov Yu. K., Sorokin A. V., Yurgelenas Yu. V., Fizicheskie osnovy elektricheskogo proboya gazov, Izd-vo MEI, M., 1999
[2] Davies A. J., “Discharge simulation”, Proc. IEE. Pt. A: Sci. Meas. Technol., 133:4 (1986), 217–240
[3] Morrow R., Cram L. E., “Flux-corrected transport and diffusion on a non-uniform mesh”, J. Comput. Phys., 57:1 (1985), 129–136 | DOI | MR | Zbl
[4] Book D. L., Boris J. P., “Flux-corrected transport. II: Generalizations of the method”, J. Comput. Phys., 18:3 (1975), 248–283 | DOI | Zbl
[5] Van Leer B., “Towards the ultimate conservative difference scheme. IV: A new approach to numerical convection”, J. Comput. Phys., 23:2 (1977), 276–299 | Zbl
[6] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49 (1983), 357–393 | DOI | MR | Zbl
[7] Sweby P. K., “High resolution TVD schemes using flux limiters”, Lect. Appl. Math., 22, 1985, 289–309 | MR | Zbl
[8] Leonard B. P., “The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection”, Comput. Meth. Appl. Mech. Engng., 88:1 (1991), 17–74 | DOI | MR | Zbl
[9] Munz C. D., “On the numerical dissipation of high resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 77:1 (1988), 18–39 | DOI | MR | Zbl
[10] Kunhardt E. E., Wu C.-H., “Towards a more accurate flux-corrected transport algorithm”, J. Comput. Phys., 68:1 (1987), 127–150 | DOI | MR | Zbl
[11] Bobrov Yu. K., Yurgelenas Yu. V., “Primenenie skhem vysokogo razresheniya v zadachakh modelirovaniya ionizatsionnykh voln gazovogo razryada”, Zh. vychisl. matem. i matem. fiz., 38:10 (1998), 1721–1731 | MR | Zbl
[12] Colella P., “Multidimensional upwind methods for hyperbolic conservation laws”, J. Comput. Phys., 87 (1990), 171–200 | DOI | MR | Zbl
[13] Van Leer B., “Multidimensional explicit difference schemes for hyperbolic conservation laws”, Comput. Meth. Appl. Sci. and Engng. VI, v. V, Elsevier Sci. Publ., Amsterdam, 1994
[14] Yourguelenas Yu. V., “Fully conservative monotonic numerical scheme for streamer plasma 2D-modelling”, Czech. J. Phys., 50, Suppl. S3 (2000), 301–304 | DOI
[15] Yourguelenas Yu. V., “Monotonic fully conservative numerical scheme for streamer discharge simulation”, HAKONE VII, 7th Internat. Symp. High Pressure Low Temperature Plasma Chemistry, Contributed papers (Greiswald, Germany, 10–13 Sept., 2000), v. 1, 159–163
[16] Wagner H.-E., Yurgelenas Yu. V., Brandenburg R., “The development of microdischarges of barrier discharges in N2/O2 mixtures — experimental investigations and modelling”, Plasma Phys. Control. Fusion, 47 (2005), B641–B654 | DOI
[17] Yurgelenas Yu. V., Wagner H.-E., “A computational model of a barrier discharge in air at atmospheric pressure: the role of residual surface charges in microdischarge formation”, J. Phys. D: Appl. Phys., 39 (2006), 4031–4043 | DOI
[18] Yurgelenas Y. V., Leeva M. A., “Development of a barrier discharge in air in highly nonhomogeneous electric field caused by the residual dielectric surface charges”, IEEE Trans. Plasma Sci., 37 (2009), 809–815 | DOI
[19] Lax P., Wendroff B., “Systems of conservation laws”, Communs Pure Appl. Math., 13 (1960), 217–237 | DOI | MR | Zbl
[20] Warming R. F., Beam R. M., “Upwind second order difference schemes and application in aerodynamics”, AIAA J., 14 (1976), 1241–1249 | DOI | MR | Zbl
[21] Fromm J. E., “A method of reducing dispersion in convective difference schemes”, J. Comput. Phys., 3 (1968), 176–189 | DOI | Zbl
[22] Velichko S. A., Lifshits Yu. B., Solntsev I. A., Skhema povyshennoi tochnosti dlya rascheta obtekaniya dvizhuschikhsya tel, Preprint No 92, TsAGI, M., 1996
[23] Radvogin Yu. B., Kvazimonotonnye mnogomernye raznostnye skhemy vtorogo poryadka tochnosti, Preprint No 19, IPMatem. AN SSSR, M., 1991
[24] Huynh H. T., “Accurate upwind schemes for the Euler equations”, AIAA J., 1995, 95-1737, 18 pp. | Zbl
[25] Kulikovsky A. A., “Two-dimensional simulation of positive streamer in $\mathrm{N}_2$ between parallel-plate electrodes”, J. Phys. D.: Appl. Phys., 28 (1995), 2483–2493 | DOI