Two-dimensional high-resolution schemes and their application to the modeling of ionized waves of gas discharge
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 8, pp. 1420-1437 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method for constructing upwind high-resolution schemes is proposed in application to the modeling of ionizing waves in gas discharges. The flux-limiting criterion for continuity equations is derived using the proposed partial monotony property of a finite difference scheme. For two-dimensional extension, the cone transport upwind approach for constructing genuinely two-dimensional difference schemes is used. It is shown that when calculating rotations of symmetric profiles by using this scheme, a circular form of isolines is not distorted in a distinct from the coordinate splitting method. The conservative second order finite-difference scheme is proposed for solving the equations system of the drift-diffusion model of electric discharge; this scheme implies finite-difference conservation laws of electric charge and full electric current (fully conservative scheme). Computations demonstrate absence of numeric oscillations and good resolution of two-dimensional ionizing fronts in simulations of streamer and barrier discharges.
@article{ZVMMF_2010_50_8_a6,
     author = {Yu. V. Yurgelenas},
     title = {Two-dimensional high-resolution schemes and their application to the modeling of ionized waves of gas discharge},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1420--1437},
     year = {2010},
     volume = {50},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_8_a6/}
}
TY  - JOUR
AU  - Yu. V. Yurgelenas
TI  - Two-dimensional high-resolution schemes and their application to the modeling of ionized waves of gas discharge
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 1420
EP  - 1437
VL  - 50
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_8_a6/
LA  - ru
ID  - ZVMMF_2010_50_8_a6
ER  - 
%0 Journal Article
%A Yu. V. Yurgelenas
%T Two-dimensional high-resolution schemes and their application to the modeling of ionized waves of gas discharge
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 1420-1437
%V 50
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_8_a6/
%G ru
%F ZVMMF_2010_50_8_a6
Yu. V. Yurgelenas. Two-dimensional high-resolution schemes and their application to the modeling of ionized waves of gas discharge. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 8, pp. 1420-1437. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_8_a6/

[1] Dyakov A. F., Bobrov Yu. K., Sorokin A. V., Yurgelenas Yu. V., Fizicheskie osnovy elektricheskogo proboya gazov, Izd-vo MEI, M., 1999

[2] Davies A. J., “Discharge simulation”, Proc. IEE. Pt. A: Sci. Meas. Technol., 133:4 (1986), 217–240

[3] Morrow R., Cram L. E., “Flux-corrected transport and diffusion on a non-uniform mesh”, J. Comput. Phys., 57:1 (1985), 129–136 | DOI | MR | Zbl

[4] Book D. L., Boris J. P., “Flux-corrected transport. II: Generalizations of the method”, J. Comput. Phys., 18:3 (1975), 248–283 | DOI | Zbl

[5] Van Leer B., “Towards the ultimate conservative difference scheme. IV: A new approach to numerical convection”, J. Comput. Phys., 23:2 (1977), 276–299 | Zbl

[6] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49 (1983), 357–393 | DOI | MR | Zbl

[7] Sweby P. K., “High resolution TVD schemes using flux limiters”, Lect. Appl. Math., 22, 1985, 289–309 | MR | Zbl

[8] Leonard B. P., “The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection”, Comput. Meth. Appl. Mech. Engng., 88:1 (1991), 17–74 | DOI | MR | Zbl

[9] Munz C. D., “On the numerical dissipation of high resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 77:1 (1988), 18–39 | DOI | MR | Zbl

[10] Kunhardt E. E., Wu C.-H., “Towards a more accurate flux-corrected transport algorithm”, J. Comput. Phys., 68:1 (1987), 127–150 | DOI | MR | Zbl

[11] Bobrov Yu. K., Yurgelenas Yu. V., “Primenenie skhem vysokogo razresheniya v zadachakh modelirovaniya ionizatsionnykh voln gazovogo razryada”, Zh. vychisl. matem. i matem. fiz., 38:10 (1998), 1721–1731 | MR | Zbl

[12] Colella P., “Multidimensional upwind methods for hyperbolic conservation laws”, J. Comput. Phys., 87 (1990), 171–200 | DOI | MR | Zbl

[13] Van Leer B., “Multidimensional explicit difference schemes for hyperbolic conservation laws”, Comput. Meth. Appl. Sci. and Engng. VI, v. V, Elsevier Sci. Publ., Amsterdam, 1994

[14] Yourguelenas Yu. V., “Fully conservative monotonic numerical scheme for streamer plasma 2D-modelling”, Czech. J. Phys., 50, Suppl. S3 (2000), 301–304 | DOI

[15] Yourguelenas Yu. V., “Monotonic fully conservative numerical scheme for streamer discharge simulation”, HAKONE VII, 7th Internat. Symp. High Pressure Low Temperature Plasma Chemistry, Contributed papers (Greiswald, Germany, 10–13 Sept., 2000), v. 1, 159–163

[16] Wagner H.-E., Yurgelenas Yu. V., Brandenburg R., “The development of microdischarges of barrier discharges in N2/O2 mixtures — experimental investigations and modelling”, Plasma Phys. Control. Fusion, 47 (2005), B641–B654 | DOI

[17] Yurgelenas Yu. V., Wagner H.-E., “A computational model of a barrier discharge in air at atmospheric pressure: the role of residual surface charges in microdischarge formation”, J. Phys. D: Appl. Phys., 39 (2006), 4031–4043 | DOI

[18] Yurgelenas Y. V., Leeva M. A., “Development of a barrier discharge in air in highly nonhomogeneous electric field caused by the residual dielectric surface charges”, IEEE Trans. Plasma Sci., 37 (2009), 809–815 | DOI

[19] Lax P., Wendroff B., “Systems of conservation laws”, Communs Pure Appl. Math., 13 (1960), 217–237 | DOI | MR | Zbl

[20] Warming R. F., Beam R. M., “Upwind second order difference schemes and application in aerodynamics”, AIAA J., 14 (1976), 1241–1249 | DOI | MR | Zbl

[21] Fromm J. E., “A method of reducing dispersion in convective difference schemes”, J. Comput. Phys., 3 (1968), 176–189 | DOI | Zbl

[22] Velichko S. A., Lifshits Yu. B., Solntsev I. A., Skhema povyshennoi tochnosti dlya rascheta obtekaniya dvizhuschikhsya tel, Preprint No 92, TsAGI, M., 1996

[23] Radvogin Yu. B., Kvazimonotonnye mnogomernye raznostnye skhemy vtorogo poryadka tochnosti, Preprint No 19, IPMatem. AN SSSR, M., 1991

[24] Huynh H. T., “Accurate upwind schemes for the Euler equations”, AIAA J., 1995, 95-1737, 18 pp. | Zbl

[25] Kulikovsky A. A., “Two-dimensional simulation of positive streamer in $\mathrm{N}_2$ between parallel-plate electrodes”, J. Phys. D.: Appl. Phys., 28 (1995), 2483–2493 | DOI