@article{ZVMMF_2010_50_8_a5,
author = {L. A. Kalyakin},
title = {Analysis of a synchronization model in an anisochronous system},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1408--1419},
year = {2010},
volume = {50},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_8_a5/}
}
L. A. Kalyakin. Analysis of a synchronization model in an anisochronous system. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 8, pp. 1408-1419. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_8_a5/
[1] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR
[2] Blekhman I. I., Sinkhronizatsiya v prirode i tekhnike, Nauka, M., 1981 | MR | Zbl
[3] Pikovskii A., Rozenblyum M., Kurts Yu., Sinkhronizatsiya. Fundamentalnoe nelineinoe yavlenie, Tekhnosfera, M., 2003
[4] Andronov A. A., Vitt A. A., Khaikin S. E., Teoriya kolebanii, Fizmatgiz, M., 1959
[5] Slavin A., Tiberkevich V., “Nonlinear auto-oscillator theory of microwave generation by spin-polarized current”, IEEE Trans. Magnetics, 45:4 (2009), 1875–1918 | DOI
[6] Adler R., “A study of locking phenomena in oscillators”, Proc. IRE, 34 (1946), 351–357 ; Rept Proc. IEEE, 61(10) (1973), 1380–1385 | DOI | DOI
[7] Barenblatt G. I., Podobie, avtomodelnost, promezhutochnye asimptotiki, Gidrometeoizdat, L., 1978 | MR
[8] Denisov S. I., Lyutyy T. V., Hanggi P., Trohidou K. N., “Dynamical and thermal effects in nanoparticle systems driven by a rotating magnetic field”, Phys. Rev. B, 74 (2006), 104406/1–104406/8 | DOI
[9] Kalyakin L. A., Shamsutdinov M. A., “Adiabatic approximations for Landau–Lifshitz equations”, Proc. Steklov Inst. Math., 2007, S1–S17
[10] Kalyakin L. A., “Asimptoticheskii analiz modelei avtorezonansa”, Uspekhi matem. nauk, 63:5 (2008), 3–72 | MR | Zbl
[11] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, VINITI, M., 1985