Steplike contrast structure in an elementary optimal control problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 8, pp. 1381-1392 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For an elementary nonlinear optimal control problem with a scalar differential constraint and with a small parameter multiplying the derivative but without any constraints on the control, the possibility of emerging fast internal phase transitions in the optimal trajectory is shown as based on results concerning contrast structures in the theory of singularly perturbed boundary value problems.
@article{ZVMMF_2010_50_8_a3,
     author = {Ni Min' Kan' and M. G. Dmitriev},
     title = {Steplike contrast structure in an elementary optimal control problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1381--1392},
     year = {2010},
     volume = {50},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_8_a3/}
}
TY  - JOUR
AU  - Ni Min' Kan'
AU  - M. G. Dmitriev
TI  - Steplike contrast structure in an elementary optimal control problem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 1381
EP  - 1392
VL  - 50
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_8_a3/
LA  - ru
ID  - ZVMMF_2010_50_8_a3
ER  - 
%0 Journal Article
%A Ni Min' Kan'
%A M. G. Dmitriev
%T Steplike contrast structure in an elementary optimal control problem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 1381-1392
%V 50
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_8_a3/
%G ru
%F ZVMMF_2010_50_8_a3
Ni Min' Kan'; M. G. Dmitriev. Steplike contrast structure in an elementary optimal control problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 8, pp. 1381-1392. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_8_a3/

[1] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vyssh. shkola, Moskva, 1990 | MR

[2] Butuzov V. F., Vasileva A. B., Nefedov N. N., “Asimptoticheskaya teoriya kontrastnykh struktur”, obzor, Avtomatika i telemekhan., 1997, no. 7, 4–32 | MR | Zbl

[3] Vasileva A. B., Butuzov V. F., Nefedov N. N., “Kontrastnye struktury v singulyarno vozmuschennykh zadachakh”, Fundamentalnaya i prikl. matem., 4:3 (1998), 799–851 | MR

[4] Ni Min Kan, Dmitriev M. G., “Kontrastnye struktury v prosteishei vektornoi variatsionnoi zadache i ikh asimptotika”, Avtomatika i telemekhan., 1998, no. 5, 41–52 | MR

[5] Vasileva A. B., Dmitriev M. G., Ni Min Kan, “O kontrastnoi strukture tipa stupenki dlya zadachi variatsionnogo ischisleniya”, Zh. vychisl. matem. i matem. fiz., 44:7 (2004), 1269–1280 | MR

[6] Vasileva A. B., “O kontrastnykh strukturakh tipa stupenki dlya sistemy singulyarno vozmuschennykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 34:10 (1994), 1401–1411 | MR

[7] Vasileva A. B., Dmitriev M. G., “Singulyarnye vozmuscheniya v zadachakh optimalnogo upravleniya”, Itogi nauki i tekhn. Ser. Matem. analiz, 20, VINITI AN SSSR, M., 1982, 3–78 | MR

[8] Dmitriev M. G., Kurina G. A., “Singulyarnye vozmuscheniya v zadachakh upravleniya”, Obzor 1982–2004 gg., Avtomatika i telemekhan., 2006, no. 1, 3–53 | MR

[9] Ni Min Kan, Vasileva A. B., Dmitriev M. G., “Ekvivalentnost dvukh mnozhestv tochek perekhoda, otvechayuschikh resheniyam s vnutrennimi perekhodnymi sloyami”, Matem. zametki, 79:1 (2006), 120–126 | MR | Zbl

[10] Belokopytov S. V., Dmitriev M. G., “Reshenie klassicheskikh zadach optimalnogo upravleniya s pogransloem”, Avtomekhanika i telemekhan., 1989, no. 7, 71–82 | MR | Zbl

[11] Belokopytov S. V., Pryamaya skhema resheniya zadach optimalnogo upravleniya s pogranichnymi sloyami, Dis. ...kand. fiz.-matem. nauk, VTs SO AN SSSR, Krasnoyarsk, 1989