@article{ZVMMF_2010_50_8_a10,
author = {S. K. Godunov and I. M. Peshkov},
title = {A thermodynamically consistent nonlinear model of an elastoplastic {Maxwell} medium},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1481--1498},
year = {2010},
volume = {50},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_8_a10/}
}
TY - JOUR AU - S. K. Godunov AU - I. M. Peshkov TI - A thermodynamically consistent nonlinear model of an elastoplastic Maxwell medium JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 1481 EP - 1498 VL - 50 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_8_a10/ LA - ru ID - ZVMMF_2010_50_8_a10 ER -
%0 Journal Article %A S. K. Godunov %A I. M. Peshkov %T A thermodynamically consistent nonlinear model of an elastoplastic Maxwell medium %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2010 %P 1481-1498 %V 50 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_8_a10/ %G ru %F ZVMMF_2010_50_8_a10
S. K. Godunov; I. M. Peshkov. A thermodynamically consistent nonlinear model of an elastoplastic Maxwell medium. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 8, pp. 1481-1498. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_8_a10/
[1] Godunov S. K., Peshkov I. M., “Simmetricheskie giperbolicheskie uravneniya nelineinoi teorii uprugosti”, Zh. vychisl. matem. i matem. fiz., 48:6 (2008), 1034–1055 | Zbl
[2] Peshkov I. M., “Chislennoe modelirovanie razryvnykh reshenii v nelineinoi teorii uprugosti”, Zh. prikl. mekhan. i tekhn. fiz., 5 (2009), 152–161
[3] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii gidrodinamiki”, Matem. sb., 47 (89):3 (1959), 271–306 | MR | Zbl
[4] Godunov S. K., “O ponyatii obobschennogo resheniya”, Dokl. AN SSSR, 134:6 (1960), 1279–1282 | MR | Zbl
[5] Godunov S. K., “O needinstvennom “razmazyvanii” razryvov v resheniyakh kvazilineinykh sistem”, Dokl. AN SSSR, 136:2 (1961), 272–274 | MR
[6] Godunov S. K., “Interesnyi klass kvazilineinykh sistem”, Dokl. AN SSSR, 139:3 (1961), 520–523
[7] Landau L. D., Livshits E. M., Teoreticheskaya fizika, v. 6, Gidrodinamika, Nauka, M., 1953
[8] Godunov S. K., Elementy mekhaniki sploshnoi sredy, Nauka, M., 1978 | MR
[9] Godunov S. K., Romenskii E. I., Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Nauch. kniga, Novosibirsk, 1998
[10] Gurevich G. I., Deformiruemost sred i rasprostranenie seismicheskikh voln, Nauka, M., 1974 | Zbl
[11] Miller G. H., Colella P., “A high-order Eulerian Godunov method for elastic-plastic flow in solids”, J. Comput. Phys., 167 (2001), 131–176 | DOI | Zbl
[12] Ivanov V. D., Kondaurov V. I., Petrov I. B., Kholodov A. S., “Raschet dinamicheskogo deformirovaniya i razrusheniya uprugoplasticheskikh tel setochno-kharakteristicheskimi metodami”, Matem. modelirovanie, 2:11 (1990), 10–29 | MR
[13] Barton P. T., Drikakis D., Romenski E. I., “An Eulerian finite-volume scheme for large elastoplastic derofmations in solids”, Internat. J. Numer. Meth. Engng., 81:4 (2010), 453–484 | MR | Zbl
[14] Godunov S. K., Peshkov I. M., “K simmetrizatsii nelineinykh uravnenii gazovoi dinamiki”, Sibirskii matem. zhurnal, 49:5 (2008), 1046–1052 | MR
[15] Qin T., “Symmetrizing nonlinear elastodynamic system”, J. Elasticity, 50 (1998), 245–252 | DOI | MR | Zbl
[16] Wagner D. H., “Symmetric hyperbolic equations of motion for a hyperelastic material”, J. Hyperbolic Different. Equat., 6 (2009), 615–630 | DOI | MR
[17] Kulikovskii A. G., Sveshnikova E. I., Nelineinye volny v uprugikh sredakh, Mosk. litsei, M., 1998
[18] Horn R. A., Johnson R. J., Topics in matrix analysis, Univ. Press, Cambridge, 1994 | MR
[19] Vorobiev O. Yu., Lomov I. N., Shutov A. V. et al., “Application of schemes on moving grids for numerical simulation of hypervelocity impact problems”, Intern. J. Impact Engng., 17 (1995), 891–902 | DOI