A thermodynamically consistent nonlinear model of an elastoplastic Maxwell medium
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 8, pp. 1481-1498 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to new applications of the ideas underlying Godunov's method that was developed as early as in the 1950s for solving fluid dynamics problems. This paper deals with elastoplastic problems. Based on an elastic model and its modification obtained by introducing the Maxwell viscosity, a method for modeling plastic deformations is proposed.
@article{ZVMMF_2010_50_8_a10,
     author = {S. K. Godunov and I. M. Peshkov},
     title = {A thermodynamically consistent nonlinear model of an elastoplastic {Maxwell} medium},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1481--1498},
     year = {2010},
     volume = {50},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_8_a10/}
}
TY  - JOUR
AU  - S. K. Godunov
AU  - I. M. Peshkov
TI  - A thermodynamically consistent nonlinear model of an elastoplastic Maxwell medium
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 1481
EP  - 1498
VL  - 50
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_8_a10/
LA  - ru
ID  - ZVMMF_2010_50_8_a10
ER  - 
%0 Journal Article
%A S. K. Godunov
%A I. M. Peshkov
%T A thermodynamically consistent nonlinear model of an elastoplastic Maxwell medium
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 1481-1498
%V 50
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_8_a10/
%G ru
%F ZVMMF_2010_50_8_a10
S. K. Godunov; I. M. Peshkov. A thermodynamically consistent nonlinear model of an elastoplastic Maxwell medium. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 8, pp. 1481-1498. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_8_a10/

[1] Godunov S. K., Peshkov I. M., “Simmetricheskie giperbolicheskie uravneniya nelineinoi teorii uprugosti”, Zh. vychisl. matem. i matem. fiz., 48:6 (2008), 1034–1055 | Zbl

[2] Peshkov I. M., “Chislennoe modelirovanie razryvnykh reshenii v nelineinoi teorii uprugosti”, Zh. prikl. mekhan. i tekhn. fiz., 5 (2009), 152–161

[3] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii gidrodinamiki”, Matem. sb., 47 (89):3 (1959), 271–306 | MR | Zbl

[4] Godunov S. K., “O ponyatii obobschennogo resheniya”, Dokl. AN SSSR, 134:6 (1960), 1279–1282 | MR | Zbl

[5] Godunov S. K., “O needinstvennom “razmazyvanii” razryvov v resheniyakh kvazilineinykh sistem”, Dokl. AN SSSR, 136:2 (1961), 272–274 | MR

[6] Godunov S. K., “Interesnyi klass kvazilineinykh sistem”, Dokl. AN SSSR, 139:3 (1961), 520–523

[7] Landau L. D., Livshits E. M., Teoreticheskaya fizika, v. 6, Gidrodinamika, Nauka, M., 1953

[8] Godunov S. K., Elementy mekhaniki sploshnoi sredy, Nauka, M., 1978 | MR

[9] Godunov S. K., Romenskii E. I., Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Nauch. kniga, Novosibirsk, 1998

[10] Gurevich G. I., Deformiruemost sred i rasprostranenie seismicheskikh voln, Nauka, M., 1974 | Zbl

[11] Miller G. H., Colella P., “A high-order Eulerian Godunov method for elastic-plastic flow in solids”, J. Comput. Phys., 167 (2001), 131–176 | DOI | Zbl

[12] Ivanov V. D., Kondaurov V. I., Petrov I. B., Kholodov A. S., “Raschet dinamicheskogo deformirovaniya i razrusheniya uprugoplasticheskikh tel setochno-kharakteristicheskimi metodami”, Matem. modelirovanie, 2:11 (1990), 10–29 | MR

[13] Barton P. T., Drikakis D., Romenski E. I., “An Eulerian finite-volume scheme for large elastoplastic derofmations in solids”, Internat. J. Numer. Meth. Engng., 81:4 (2010), 453–484 | MR | Zbl

[14] Godunov S. K., Peshkov I. M., “K simmetrizatsii nelineinykh uravnenii gazovoi dinamiki”, Sibirskii matem. zhurnal, 49:5 (2008), 1046–1052 | MR

[15] Qin T., “Symmetrizing nonlinear elastodynamic system”, J. Elasticity, 50 (1998), 245–252 | DOI | MR | Zbl

[16] Wagner D. H., “Symmetric hyperbolic equations of motion for a hyperelastic material”, J. Hyperbolic Different. Equat., 6 (2009), 615–630 | DOI | MR

[17] Kulikovskii A. G., Sveshnikova E. I., Nelineinye volny v uprugikh sredakh, Mosk. litsei, M., 1998

[18] Horn R. A., Johnson R. J., Topics in matrix analysis, Univ. Press, Cambridge, 1994 | MR

[19] Vorobiev O. Yu., Lomov I. N., Shutov A. V. et al., “Application of schemes on moving grids for numerical simulation of hypervelocity impact problems”, Intern. J. Impact Engng., 17 (1995), 891–902 | DOI