Approximation of plane curves by circular arcs
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 8, pp. 1347-1356
Voir la notice de l'article provenant de la source Math-Net.Ru
A method is proposed for approximating plane curves by circular arcs with length preservation. It is proved that, under certain rather mild constraints, any $C^3$-smooth curve (open or closed, possibly, with self-intersections) can be approximated by a $C^1$-smooth curve consisting of smoothly joined circular arcs. The approximation passes through interpolation nodes where it is tangent to the original curve, with the arc lengths between the nodes being preserved. The error of the approximation is estimated, and numerical examples are presented.
@article{ZVMMF_2010_50_8_a0,
author = {I. Kh. Sabitov and A. V. Slovesnov},
title = {Approximation of plane curves by circular arcs},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1347--1356},
publisher = {mathdoc},
volume = {50},
number = {8},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_8_a0/}
}
TY - JOUR AU - I. Kh. Sabitov AU - A. V. Slovesnov TI - Approximation of plane curves by circular arcs JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 1347 EP - 1356 VL - 50 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_8_a0/ LA - ru ID - ZVMMF_2010_50_8_a0 ER -
I. Kh. Sabitov; A. V. Slovesnov. Approximation of plane curves by circular arcs. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 8, pp. 1347-1356. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_8_a0/