On the smoothness of the solution of an abstract coupled problem of thermoelasticity type
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 7, pp. 1240-1257 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Cauchy problem for a system of two operator-differential equations in Hilbert space that is a generalization of a number of linear coupled thermoelasticity problems is investigated. Results concerning the high smoothness of the solutions to these equations are proved.
@article{ZVMMF_2010_50_7_a6,
     author = {S. E. Zhelezovskiǐ},
     title = {On the smoothness of the solution of an abstract coupled problem of thermoelasticity type},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1240--1257},
     year = {2010},
     volume = {50},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_7_a6/}
}
TY  - JOUR
AU  - S. E. Zhelezovskiǐ
TI  - On the smoothness of the solution of an abstract coupled problem of thermoelasticity type
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 1240
EP  - 1257
VL  - 50
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_7_a6/
LA  - ru
ID  - ZVMMF_2010_50_7_a6
ER  - 
%0 Journal Article
%A S. E. Zhelezovskiǐ
%T On the smoothness of the solution of an abstract coupled problem of thermoelasticity type
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 1240-1257
%V 50
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_7_a6/
%G ru
%F ZVMMF_2010_50_7_a6
S. E. Zhelezovskiǐ. On the smoothness of the solution of an abstract coupled problem of thermoelasticity type. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 7, pp. 1240-1257. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_7_a6/

[1] Botsenyuk A. N., Pankov A. A., “Nekotorye stseplennye sistemy abstraktnykh differentsialnykh uravnenii tipa uravnenii termouprugosti”, Dokl. AN USSR. Ser. A, 1982, no. 10, 6–8 | MR | Zbl

[2] Zhelezovskii S. E., Kirichenko V. F., Krysko V. A., Voprosy suschestvovaniya i edinstvennosti resheniya odnoi neklassicheskoi sistemy differentsialnykh uravnenii, Dep. v VINITI 28.11.83, No 6302-83 Dep., Saratov, 1983

[3] Botsenyuk A. N., Pankov A. A., “Regulyarnost reshenii svyazannykh sistem abstraktnykh differentsialnykh uravnenii tipa uravnenii termouprugosti i dvoistvennykh k nim”, XVII Voronezhskaya zimnyaya matem. shkola (Voronezh, 1984), v. 1, 37–39

[4] Botsenyuk A. N., “Regulyarnost reshenii svyazannykh sistem abstraktnykh differentsialnykh uravnenii tipa uravnenii termouprugosti”, Materialy X Konf. molodykh uchenykh IPMM AN USSR (Lvov, 1984), v. 2, 35–39

[5] Zhelezovskii S. E., Kirichenko V. F., Krysko V. A., O suschestvovanii, edinstvennosti resheniya i skorosti skhodimosti metoda Bubnova–Galerkina dlya odnoi neklassicheskoi sistemy differentsialnykh uravnenii, Dep. v VINITI 26.11.85, No 8162-V85, Saratov, 1985

[6] Gershtein L. M., “Ob odnoi svyazannoi sisteme differentsialnykh uravnenii v banakhovom prostranstve”, Ukr. matem. zh., 41:7 (1989), 898–905 | MR

[7] Gershtein L. M., Silchenko Yu. T., Sobolevskii P. E., “O polugruppovykh podkhodakh k issledovaniyu zadach termouprugosti”, Metody issl. differents. i integr. operatorov, Nauk. dumka, Kiev, 1989, 46–54 | MR

[8] Gershtein L. M., “Ob odnoi svyazannoi sisteme abstraktnykh differentsialnykh uravnenii tipa uravnenii termouprugosti”, Dokl. AN AzSSR, 45:11–12 (1989), 8–11 | MR | Zbl

[9] Novatskii V., Teoriya uprugosti, Mir, M., 1975 | MR

[10] Dafermos C. M., “On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity”, Arch. Ration. Mech. and Anal., 29:4 (1968), 241–271 | DOI | MR

[11] Kowalski T., Litewska K., Piskorek A., “Uniqueness and regularity of the solution of the first initial-boundary value problem in linear thermoelasticity”, Bull. Pol. Acad. Sci. Techn. Sci., 30:3–4 (1982), 171–175 | MR | Zbl

[12] Gawinecki J., “Existence, uniqueness and regularity of the solution of the first boundary-initial value problem for the equations of linear thermo-microelasticity”, Bull. Pol. Acad. Sci. Techn. Sci., 34:7–8 (1986), 447–460 | MR | Zbl

[13] Chrzeszczyk A., “Some existence results in dynamical thermoelasticity”, Arch. Mech., 39:6 (1987), 605–632 | MR

[14] Thomée V., Galerkin finite element methods for parabolic problems, Lect. Notes Math., 1054, Springer, Berlin etc., 1984 | MR | Zbl

[15] Dupont T., “$L^2$-estimates for Galerkin method for second order hyperbolic equations”, SIAM J. Numer. Anal., 10:5 (1973), 880–889 | DOI | MR | Zbl

[16] Baker G. A., “Error estimates for finite element methods for second order hyperbolic equations”, SIAM J. Numer. Anal., 13:4 (1976), 564–576 | DOI | MR | Zbl

[17] Dendy J. E., Jr., “Galerkin's method for some highly nonlinear problems”, SIAM J. Numer. Anal., 14:2 (1977), 327–347 | DOI | MR | Zbl

[18] Baker G. A., Dougalis V. A., Karakashian O., “On multistep-Galerkin discretization of semilinear hyperbolic and parabolic equations”, Nonlinear Anal. Theory, Meth. and Appl., 4:3 (1980), 579–597 | DOI | MR | Zbl

[19] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR | Zbl

[20] Zhelezovskii S. E., “O skhodimosti metoda Galerkina dlya svyazannykh zadach termouprugosti”, Zh. vychisl. matem. i matem. fiz., 46:8 (2006), 1462–1474 | MR

[21] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Nauka, M., 1971 | Zbl

[22] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[23] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[24] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[25] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR

[26] Volmir A. S., Nelineinaya dinamika plastin i obolochek, Nauka, M., 1972 | MR

[27] Podstrigach Ya. S., “Temperaturnoe pole v tonkikh obolochkakh”, Dokl. AN USSR, 1958, no. 5, 505–507 | Zbl

[28] Lykov A. V., Teoriya teploprovodnosti, Vysshaya shkola, M., 1967 | Zbl

[29] Guseva O. V., “O kraevykh zadachakh dlya silno ellipticheskikh sistem”, Dokl. AN SSSR, 102:6 (1955), 1069–1072 | MR | Zbl