A modified Chapman–Enskog method in terms of intensive parameters
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 7, pp. 1303-1314 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A kinetic description of gas mixtures with internal degrees of freedom and chemical reactions is presented. The kinetic equations are solved using a modified Chapman-Enskog method with the transition from the governing extensive parameters to adjoint intensive ones. The advantages of this transition are discussed. It is shown that, due to this transition, a number of theorems of classical aerodynamics can be extended to nonbarotropic gas flows with physicochemical processes and the dependence of the sound velocity on intensive parameters can be found in the zero approximation of the method.
@article{ZVMMF_2010_50_7_a11,
     author = {M. A. Rydalevskaya},
     title = {A modified {Chapman{\textendash}Enskog} method in terms of intensive parameters},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1303--1314},
     year = {2010},
     volume = {50},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_7_a11/}
}
TY  - JOUR
AU  - M. A. Rydalevskaya
TI  - A modified Chapman–Enskog method in terms of intensive parameters
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 1303
EP  - 1314
VL  - 50
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_7_a11/
LA  - ru
ID  - ZVMMF_2010_50_7_a11
ER  - 
%0 Journal Article
%A M. A. Rydalevskaya
%T A modified Chapman–Enskog method in terms of intensive parameters
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 1303-1314
%V 50
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_7_a11/
%G ru
%F ZVMMF_2010_50_7_a11
M. A. Rydalevskaya. A modified Chapman–Enskog method in terms of intensive parameters. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 7, pp. 1303-1314. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_7_a11/

[1] Chepmen S., Kauling T., Matematicheskaya teoriya neodnorodnykh gazov, Izd-vo inostr. lit., M., 1960 | MR

[2] Wang-Chang C. S., Uhlenbeck G. E., Transport phenomena in polyatomic molecules, CM-681, Univ. Michigan Publ., Michigan, 1951

[3] Monchick L., Yun R. S., Mason E. A., “Formal kinetic theory of transport phenomena in polyatomic gas mixtures”, J. Chem. Phys., 39:3 (1963), 654–669 | DOI

[4] Vallander S. V., Egorova I. A., Rydalevskaya M. A., “Rasprostranenie metoda Enskoga-Chepmena na smesi gazov s vnutrennimi stepenyami svobody i khimicheskimi reaktsiyami”, Vestn. LGU. Ser. 1, 1964, no. 7, 155–161 | MR

[5] Andersen G., “Vyvod uravnenii gidrodinamiki iz uravnenii Boltsmana”, Kinetich. protsessy v gazakh i plazme, Atomizdat, M., 1972, 27–51

[6] Rydalevskaya M. A., “Formalnoe kineticheskoe opisanie smesei gazov s dissotsiatsiei i rekombinatsiei”, Aerodinamika razrezhennykh gazov, 9, Izd-vo LGU, L., 1978, 5–20

[7] Vallander S. V., Nagnibeda E. A., Rydalevskaya M. A., Nekotorye voprosy kineticheskoi teorii khimicheski reagiruyuschei smesi gazov, Izd-vo LGU, L., 1977

[8] Stupochenko E. V., Losev S. A., Osipov A. I., Relaksatsionnye protsessy v udarnykh volnakh, Nauka, M., 1965

[9] Nagnibeda E. A., “O modifikatsii metoda Chepmena-Enskoga dlya smesi reagiruyuschikh gazov s uchetom bystrykh i medlennykh protsessov”, Vestn. LGU. Ser. 1, 1973, no. 7, 109–114 | Zbl

[10] Nagnibeda E. A., Kustova E. V., Kineticheskaya teoriya protsessov perenosa i relaksatsii v potokakh neravnovesnykh reagiruyuschikh gazov, Izd-vo SPbGU, SPb., 2003

[11] Rydalevskaya M. A., Statisticheskie i kineticheskie modeli v fiziko-khimicheskoi gazodinamike, Izd-vo SPbGU, SPb., 2003

[12] Matsuk V. A., Rykov V. A., “Rasprostranenie metoda Chepmena-Enskoga na smesi reagiruyuschikh gazov”, Zh. vychisl. matem. i matem. fiz., 18:1 (1978), 167–182 ; “О методе Чепмена-Энскога для многоскоростной многотемпературной реагирующей смеси газов”:5, 1230–1242 | MR | Zbl | MR

[13] Kogan M. N., Galkin V. S., Makashev N. K., “Generalized Chapman-Enskog method: derivation of the non equilibrium gas dynamic equaions”, RGD 11, Papers Internat. Symp. (Cannes, 1978), v. 2, Paris, 1979, 693–734

[14] Kogan M. N., “Kinetic theory in aerothermodynamics”, Progr. Aerospace Sci., 29:4 (1992), 271–354 | DOI

[15] Malozemov V. N., Omelchenko A. V., Rydalevskaya M. A., “O maksimizatsii entropii pri nalichii lineinykh ogranichenii”, Zh. vychisl. matem. i matem. fiz., 38:9 (1998), 1509–1513 | MR | Zbl

[16] Rydalevskaya M. A., “Kinetic foundation of non extensive gas dynamics”, RGD 24, Proc. Internat. Symp., AIP Conf. Proc., Melwill, NY, 2005, 1073–1078

[17] Klimontovich Yu. L., Statisticheskaya teoriya otkrytykh sistem, v. I, TOO Yanus, M., 1995

[18] Rydalevskaya M. A., “Adiabaticheskie sootnosheniya v potokakh gaza s fiziko-khimicheskimi protsessami”, Aerodinamika, Izd-vo I. V. Balabanova, M., 2008, 61–69

[19] Vallander S. V., Lektsii po gidroaeromekhanike, Izd-vo SPbGU, SPb., 2005

[20] Sedov L. I., Mekhanika sploshnoi sredy, v. 2, Nauka, M., 1970

[21] Voroshilova Yu. N., Rydalevskaya M. A., “Vliyanie kolebatelnogo vozbuzhdeniya molekul na skorost zvuka v vysokotemperaturnom dvukhatomnom gaze”, Prikl. mekhan. i tekhn. fiz., 49:3 (2008), 28–34