On the computation of the spectrum of directionally perturbed operators
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 7, pp. 1179-1199
Cet article a éte moissonné depuis la source Math-Net.Ru
A class of operators with special spectral properties is defined. An operator in this class is fairly simple, acts in a separable Hilbert space, and can be perturbed so that an a priori given function from its domain is an eigenfunction of the perturbed operator. This fact is shown to be useful for constructing operators in mathematical physics. Specific examples are given.
@article{ZVMMF_2010_50_7_a1,
author = {E. M. Maleko},
title = {On the computation of the spectrum of directionally perturbed operators},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1179--1199},
year = {2010},
volume = {50},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_7_a1/}
}
TY - JOUR AU - E. M. Maleko TI - On the computation of the spectrum of directionally perturbed operators JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 1179 EP - 1199 VL - 50 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_7_a1/ LA - ru ID - ZVMMF_2010_50_7_a1 ER -
E. M. Maleko. On the computation of the spectrum of directionally perturbed operators. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 7, pp. 1179-1199. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_7_a1/
[1] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii: funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974
[2] Maleko E. M., “O predstavlenii operatora s zaranee zadannoi sobstvennoi funktsiei”, Vestn. MaGU. Ser. matem., 9, MaGU, Magnitogorsk, 2006, 64–69 | Zbl
[3] Naimark M. A., Lineinye differentsialnye operatory, Gostekhteorizdat, M., 1954
[4] Maleko E. M., K vychisleniyu spektra diskretnykh i napravlenno vozmuschennykh operatorov, monografiya, MaGU, Magnitogorsk, 2007