Formation of gaps in the spectrum of the problem of waves on the surface of a periodic channel
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 6, pp. 1092-1108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the essential spectrum of a problem in the theory of linear water waves in a periodic channel can contain any prescribed number of gaps. One of such waveguides consists of a periodic family of identical ponds of unit size connected by narrow shallow channels. The effect of gap opening is achieved by decreasing a geometric parameter describing the size of these channels.
@article{ZVMMF_2010_50_6_a9,
     author = {S. A. Nazarov},
     title = {Formation of gaps in the spectrum of the problem of waves on the surface of a periodic channel},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1092--1108},
     year = {2010},
     volume = {50},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a9/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Formation of gaps in the spectrum of the problem of waves on the surface of a periodic channel
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 1092
EP  - 1108
VL  - 50
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a9/
LA  - ru
ID  - ZVMMF_2010_50_6_a9
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Formation of gaps in the spectrum of the problem of waves on the surface of a periodic channel
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 1092-1108
%V 50
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a9/
%G ru
%F ZVMMF_2010_50_6_a9
S. A. Nazarov. Formation of gaps in the spectrum of the problem of waves on the surface of a periodic channel. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 6, pp. 1092-1108. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a9/

[1] Stoker J. J., Water waves. The mathematical theory with applications, Reprint of the 1957 original, John Willey Sons, Inc., New York, 1992 | MR

[2] Kuznetsov N., Maz'ya V., Vainberg B., Linear water waves, Cambridge Univ. Press, Cambridge, 2002 | MR

[3] Indeitsev D. A., Kuznetsov N. G., Motygin O. V., Mochalova Yu. A., Lokalizatsiya lineinykh voln, Izd-vo S.-Peterb. un-ta, SPb., 2007

[4] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[5] Nazarov S. A., “O sguschenii tochechnogo spektra na nepreryvnom v zadachakh lineinoi teorii voln na poverkhnosti idealnoi zhidkosti”, Zap. nauchn. seminarov peterburgskogo otd. matem. in-ta RAN, 348, 2007, 99–126 | MR

[6] Nazarov S. A., “Kontsentratsiya lovushechnykh mod v zadachakh lineinoi teorii voln na poverkhnosti zhidkosti”, Matem. sb., 199:12 (2008), 53–78 | MR | Zbl

[7] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo LGU, L., 1980 | MR

[8] Gelfand I. M., “Razlozhenie po sobstvennym funktsiyam uravneniya s periodicheskimi koeffitsientami”, Dokl. AN SSSR, 73 (1950), 1117–1120 | MR

[9] Kuchment P. A., “Teoriya Floke dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, Uspekhi matem. nauk, 37:4 (1982), 3–52 | MR | Zbl

[10] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[11] Kuchment P., Floquet theory for partial differential equations, Birchäuser, Basel, 1993 | MR | Zbl

[12] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[13] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982 | MR

[14] Skriganov M. M., Geometricheskie i arifmeticheskie metody v spektralnoi teorii mnogomernykh periodicheskikh operatorov, Tr. MIAN SSSR, 171, Nauka, Leningrad, 1985 | MR | Zbl

[15] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Mosk. matem. ob-va, 16, 1963, 219–292

[16] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI

[17] Mazya V. G., Plamenevskii B. A., “Otsenki v $L_p$ i v klassakh Geldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 77 (1977), 25–82 | MR

[18] Nazarov S. A., “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi matem. nauk, 54:5 (1999), 77–142 | MR | Zbl

[19] Kozlov V. A., Maz'ya V. G., Rossmann J., Elliptic boundary value problems in domains with point singularities, Amer. Math. Soc., Providence, 1997 | MR | Zbl

[20] Nazarov S. A., “Ellipticheskie kraevye zadachi s periodicheskimi koeffitsientami v tsilindre”, Izv. AN SSSR. Ser. matem., 45:1 (1981), 101–112 | MR | Zbl

[21] Nazarov S. A., “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domain”, Sobolev Spaces in Math., v. II, Internat. Math. Ser., 9, 2008, 261–309 | MR

[22] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[23] Kondratev V. A., “O gladkosti reshenii zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v okrestnosti rebra”, Differents. ur-niya, 6:10 (1970), 1831–1843

[24] Kondratev V. A., “Osobennosti reshenii zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v okrestnosti rebra”, Differents. ur-niya, 13:11 (1977), 2026–2032 | MR

[25] Mazya V. G., Plamenevskii B. A., “Ob elliptichnosti kraevykh zadach v oblastyakh s kusochno gladkoi granitsei”, Tr. simpoziuma po mekhan. sploshnykh sred i rodstvennym probl. analiza, v. 1, Metsniereba, Tbilisi, 1973, 171–181

[26] Nazarov S. A., Plamenevskii B. A., “Zadacha Neimana dlya samosopryazhennykh ellipticheskikh sistem v oblasti s kusochno gladkoi granitsei”, Tr. Leningr. matem. ob-va, 1, 1990, 174–211 | MR

[27] Dauge M., Elliptic boundary value problems on corner domains. Smoothness and asymptotics of solutions, Lect. Notes in Math., 1341, Springer, Berlin, 1988 | MR | Zbl

[28] Grisvard P., Singularities in boundary value problems, Masson, Paris; Springer-Verlag, Berlin, 1992 | MR | Zbl

[29] Nikishkin V. A., “Osobennosti reshenii zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v okrestnosti rebra”, Vestn. MGU, 1979, no. 2, 51–62 | MR | Zbl

[30] Maz'ya V. G., Rossmann J., “Über die Asymptotik der Lösungen elliptischer Randwertaufgaben in der Umgebung von Kanten”, Math. Nachr., 138 (1988), 27–53 | DOI | MR

[31] Nazarov S. A., Plamenevskii B. A., “Samosopryazhennye zadachi s usloviyami izlucheniya na rebrakh granitsy”, Algebra i analiz, 4:3 (1992), 196–225 | MR | Zbl

[32] Nazarov S. A., Plamenevskii B. A., “Obobschennaya formula Grina dlya ellipticheskikh zadach v oblastyakh s rebrami”, Probl. matem. analiza, 13, SPbGU, SPb., 1992, 106–147

[33] Nazarov S. A., Plamenevskii B. A., “Samosopryazhennye ellipticheskie zadachi: operatory rasseyaniya i polyarizatsii na rebrakh granitsy”, Algebra i analiz, 6:4 (1994), 157–186 | MR

[34] Nazarov S. A., “Samosopryazhennye rasshireniya operatora zadachi Dirikhle v trekhmernoi oblasti s rebrom”, Sibirskii zhurnal industr. matem., 11:1 (2008), 80–95 | MR