Stability of difference schemes in terms of Riemann invariants for a polytropic gas
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 6, pp. 1078-1091
Voir la notice de l'article provenant de la source Math-Net.Ru
The monotonicity and stability of a finite difference scheme with respect to initial data in the supremum norm are analyzed as applied to the polytropic gas equations written in terms of Riemann invariants for subsonic flows with $1\gamma3$. Conditions on the initial and boundary data are obtained under which subsonic flows with no shock waves develop in the medium. The theoretical conclusions are supported by numerical results.
@article{ZVMMF_2010_50_6_a8,
author = {G. L. Martsinkevich and P. P. Matus and M. M. Chuǐko},
title = {Stability of difference schemes in terms of {Riemann} invariants for a polytropic gas},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1078--1091},
publisher = {mathdoc},
volume = {50},
number = {6},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a8/}
}
TY - JOUR AU - G. L. Martsinkevich AU - P. P. Matus AU - M. M. Chuǐko TI - Stability of difference schemes in terms of Riemann invariants for a polytropic gas JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 1078 EP - 1091 VL - 50 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a8/ LA - ru ID - ZVMMF_2010_50_6_a8 ER -
%0 Journal Article %A G. L. Martsinkevich %A P. P. Matus %A M. M. Chuǐko %T Stability of difference schemes in terms of Riemann invariants for a polytropic gas %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2010 %P 1078-1091 %V 50 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a8/ %G ru %F ZVMMF_2010_50_6_a8
G. L. Martsinkevich; P. P. Matus; M. M. Chuǐko. Stability of difference schemes in terms of Riemann invariants for a polytropic gas. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 6, pp. 1078-1091. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a8/